Keywords: Narayana numbers; Hankel transform; orthogonal polynomials
@article{10_1007_s10587_012_0015_8,
author = {Petkovi\'c, Marko D. and Barry, Paul and Rajkovi\'c, Predrag},
title = {Closed-form expression for {Hankel} determinants of the {Narayana} polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {39--57},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0015-8},
mrnumber = {2899733},
zbl = {1249.11042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/}
}
TY - JOUR AU - Petković, Marko D. AU - Barry, Paul AU - Rajković, Predrag TI - Closed-form expression for Hankel determinants of the Narayana polynomials JO - Czechoslovak Mathematical Journal PY - 2012 SP - 39 EP - 57 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/ DO - 10.1007/s10587-012-0015-8 LA - en ID - 10_1007_s10587_012_0015_8 ER -
%0 Journal Article %A Petković, Marko D. %A Barry, Paul %A Rajković, Predrag %T Closed-form expression for Hankel determinants of the Narayana polynomials %J Czechoslovak Mathematical Journal %D 2012 %P 39-57 %V 62 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/ %R 10.1007/s10587-012-0015-8 %G en %F 10_1007_s10587_012_0015_8
Petković, Marko D.; Barry, Paul; Rajković, Predrag. Closed-form expression for Hankel determinants of the Narayana polynomials. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 39-57. doi: 10.1007/s10587-012-0015-8
[1] Barry, P.: On integer-sequences-based constructions of generalized Pascal triangles. J. Integer Seq. 59 (2006), Article 06.2.4. Electronic only. | MR
[2] Barry, P., Hennessy, A.: Notes on a family of Riordan arrays and associated integer Hankel transforms. J. Integer Seq. 12 (2009), Article ID 09.5.3. Electronic only. | MR | Zbl
[3] Brändén, P.: $q$-Narayana numbers and the flag $h$-vector of $J(2 \times n)$. Discrete Math. 281 (2004), 67-81. | DOI | MR
[4] Brualdi, R. A., Kirkland, S.: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. J. Comb. Theory Ser. B 94 (2005), 334-351. | DOI | MR | Zbl
[5] Chamberland, M., French, C.: Generalized Catalan numbers and generalized Hankel transformations. J. Integer Seq. 10 (2007). | MR | Zbl
[6] Chihara, T. S.: An Introduction to Orthogonal Polynomials. Gordon and Breach New York (1978). | MR | Zbl
[7] Cvetković, A., Rajković, P. M., Ivković, M.: Catalan Numbers, the Hankel transform, and Fibonacci numbers. J. Integer Seq. 5 (2002). | MR | Zbl
[8] Eğecioğlu, O., Redmond, T., Ryavec, C.: Almost product evaluation of Hankel determinants. Electron. J. Comb. 15, \#R6 (2008). | DOI | MR | Zbl
[9] Eğecioğlu, O., Redmond, T., Ryavec, C.: A multilinear operator for almost product evaluation of Hankel determinants. J. Comb. Theory Ser. A 117 (2010), 77-103. | DOI | MR | Zbl
[10] Armas, M. Garcia, Sethuraman, B. A.: A note on the Hankel transform of the central binomial coefficients. J. Integer Seq. 11 (2008), Article ID 08.5.8. | MR
[11] Gautschi, W.: Orthogonal polynomials: Applications and computation. In: Acta Numerica Vol. 5 A. Iserles Cambridge University Press Cambridge (1996), 45-119. | DOI | MR | Zbl
[12] Gautschi, W.: Orthogonal Polynomials. Computation and Approximation. Oxford University Press Oxford (2004). | MR | Zbl
[13] Ismail, M. E. H.: Determinants with orthogonal polynomial entries. J. Comput. Appl. Math. 178 (2005), 255-266. | DOI | MR | Zbl
[14] Junod, A.: Hankel determinants and orthogonal polynomials. Expo. Math. 21 (2003), 63-74. | DOI | MR | Zbl
[15] Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411 (2005), 68-166. | DOI | MR | Zbl
[16] Lang, W.: On sums of powers of zeros of polynomials. J. Comput. Appl. Math. 89 (1998), 237-256. | DOI | MR | Zbl
[17] Layman, J. W.: The Hankel transform and some of its properties. J. Integer Seq. 4 (2001), Article 01.1.5. Electronic only. | MR | Zbl
[18] Liu, L. L., Wang, Y.: A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 38 (2007), 542-560. | DOI | MR | Zbl
[19] MacMahon, P. A.: Combinatorial Analysis, Vols. 1 and 2. Cambridge University Press Cambridge (1915), 1916 reprinted by Chelsea, 1960.
[20] Mansour, T., Sun, Y.: Identities involving Narayana polynomials and Catalan numbers. Discrete Math. 309 (2009), 4079-4088. | DOI | MR | Zbl
[21] Narayana, T. V.: Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités. C. R. Acad. Sci. 240 (1955), 1188-1189 French. | MR | Zbl
[22] Rajković, P. M., Petković, M. D., Barry, P.: The Hankel transform of the sum of consecutive generalized Catalan numbers. Integral Transforms Spec. Funct. 18 (2007), 285-296. | DOI | MR | Zbl
[23] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences. available at http://www.research.att.com/ {njas/sequences} | Zbl
[24] Sulanke, R. A.: Counting lattice paths by Narayana polynomials. Electron. J. Comb. 7 (2000), \#R40. | DOI | MR | Zbl
[25] Sulanke, R. A.: The Narayana distribution. J. Statist. Plann. Inference 101 (2002), 311-326. | DOI | MR | Zbl
[26] Xin, G.: Proof of the Somos-4 Hankel determinants conjecture. Adv. Appl. Math. 42 (2009), 152-156. | DOI | MR | Zbl
Cité par Sources :