Closed-form expression for Hankel determinants of the Narayana polynomials
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 39-57
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.
We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.
DOI : 10.1007/s10587-012-0015-8
Classification : 11B83, 11Y55, 33C45, 34A25
Keywords: Narayana numbers; Hankel transform; orthogonal polynomials
@article{10_1007_s10587_012_0015_8,
     author = {Petkovi\'c, Marko D. and Barry, Paul and Rajkovi\'c, Predrag},
     title = {Closed-form expression for {Hankel} determinants of the {Narayana} polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {39--57},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0015-8},
     mrnumber = {2899733},
     zbl = {1249.11042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/}
}
TY  - JOUR
AU  - Petković, Marko D.
AU  - Barry, Paul
AU  - Rajković, Predrag
TI  - Closed-form expression for Hankel determinants of the Narayana polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 39
EP  - 57
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/
DO  - 10.1007/s10587-012-0015-8
LA  - en
ID  - 10_1007_s10587_012_0015_8
ER  - 
%0 Journal Article
%A Petković, Marko D.
%A Barry, Paul
%A Rajković, Predrag
%T Closed-form expression for Hankel determinants of the Narayana polynomials
%J Czechoslovak Mathematical Journal
%D 2012
%P 39-57
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0015-8/
%R 10.1007/s10587-012-0015-8
%G en
%F 10_1007_s10587_012_0015_8
Petković, Marko D.; Barry, Paul; Rajković, Predrag. Closed-form expression for Hankel determinants of the Narayana polynomials. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 39-57. doi: 10.1007/s10587-012-0015-8

[1] Barry, P.: On integer-sequences-based constructions of generalized Pascal triangles. J. Integer Seq. 59 (2006), Article 06.2.4. Electronic only. | MR

[2] Barry, P., Hennessy, A.: Notes on a family of Riordan arrays and associated integer Hankel transforms. J. Integer Seq. 12 (2009), Article ID 09.5.3. Electronic only. | MR | Zbl

[3] Brändén, P.: $q$-Narayana numbers and the flag $h$-vector of $J(2 \times n)$. Discrete Math. 281 (2004), 67-81. | DOI | MR

[4] Brualdi, R. A., Kirkland, S.: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. J. Comb. Theory Ser. B 94 (2005), 334-351. | DOI | MR | Zbl

[5] Chamberland, M., French, C.: Generalized Catalan numbers and generalized Hankel transformations. J. Integer Seq. 10 (2007). | MR | Zbl

[6] Chihara, T. S.: An Introduction to Orthogonal Polynomials. Gordon and Breach New York (1978). | MR | Zbl

[7] Cvetković, A., Rajković, P. M., Ivković, M.: Catalan Numbers, the Hankel transform, and Fibonacci numbers. J. Integer Seq. 5 (2002). | MR | Zbl

[8] Eğecioğlu, O., Redmond, T., Ryavec, C.: Almost product evaluation of Hankel determinants. Electron. J. Comb. 15, \#R6 (2008). | DOI | MR | Zbl

[9] Eğecioğlu, O., Redmond, T., Ryavec, C.: A multilinear operator for almost product evaluation of Hankel determinants. J. Comb. Theory Ser. A 117 (2010), 77-103. | DOI | MR | Zbl

[10] Armas, M. Garcia, Sethuraman, B. A.: A note on the Hankel transform of the central binomial coefficients. J. Integer Seq. 11 (2008), Article ID 08.5.8. | MR

[11] Gautschi, W.: Orthogonal polynomials: Applications and computation. In: Acta Numerica Vol. 5 A. Iserles Cambridge University Press Cambridge (1996), 45-119. | DOI | MR | Zbl

[12] Gautschi, W.: Orthogonal Polynomials. Computation and Approximation. Oxford University Press Oxford (2004). | MR | Zbl

[13] Ismail, M. E. H.: Determinants with orthogonal polynomial entries. J. Comput. Appl. Math. 178 (2005), 255-266. | DOI | MR | Zbl

[14] Junod, A.: Hankel determinants and orthogonal polynomials. Expo. Math. 21 (2003), 63-74. | DOI | MR | Zbl

[15] Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411 (2005), 68-166. | DOI | MR | Zbl

[16] Lang, W.: On sums of powers of zeros of polynomials. J. Comput. Appl. Math. 89 (1998), 237-256. | DOI | MR | Zbl

[17] Layman, J. W.: The Hankel transform and some of its properties. J. Integer Seq. 4 (2001), Article 01.1.5. Electronic only. | MR | Zbl

[18] Liu, L. L., Wang, Y.: A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 38 (2007), 542-560. | DOI | MR | Zbl

[19] MacMahon, P. A.: Combinatorial Analysis, Vols. 1 and 2. Cambridge University Press Cambridge (1915), 1916 reprinted by Chelsea, 1960.

[20] Mansour, T., Sun, Y.: Identities involving Narayana polynomials and Catalan numbers. Discrete Math. 309 (2009), 4079-4088. | DOI | MR | Zbl

[21] Narayana, T. V.: Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités. C. R. Acad. Sci. 240 (1955), 1188-1189 French. | MR | Zbl

[22] Rajković, P. M., Petković, M. D., Barry, P.: The Hankel transform of the sum of consecutive generalized Catalan numbers. Integral Transforms Spec. Funct. 18 (2007), 285-296. | DOI | MR | Zbl

[23] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences. available at http://www.research.att.com/ {njas/sequences} | Zbl

[24] Sulanke, R. A.: Counting lattice paths by Narayana polynomials. Electron. J. Comb. 7 (2000), \#R40. | DOI | MR | Zbl

[25] Sulanke, R. A.: The Narayana distribution. J. Statist. Plann. Inference 101 (2002), 311-326. | DOI | MR | Zbl

[26] Xin, G.: Proof of the Somos-4 Hankel determinants conjecture. Adv. Appl. Math. 42 (2009), 152-156. | DOI | MR | Zbl

Cité par Sources :