The growth of Dirichlet series
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 29-38
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.
We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.
DOI : 10.1007/s10587-012-0014-9
Classification : 30B50
Keywords: Dirichlet series; order; abscissa of convergence
@article{10_1007_s10587_012_0014_9,
     author = {Gu, Zhendong and Sun, Daochun},
     title = {The growth of {Dirichlet} series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {29--38},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0014-9},
     mrnumber = {2899732},
     zbl = {1249.30004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0014-9/}
}
TY  - JOUR
AU  - Gu, Zhendong
AU  - Sun, Daochun
TI  - The growth of Dirichlet series
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 29
EP  - 38
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0014-9/
DO  - 10.1007/s10587-012-0014-9
LA  - en
ID  - 10_1007_s10587_012_0014_9
ER  - 
%0 Journal Article
%A Gu, Zhendong
%A Sun, Daochun
%T The growth of Dirichlet series
%J Czechoslovak Mathematical Journal
%D 2012
%P 29-38
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0014-9/
%R 10.1007/s10587-012-0014-9
%G en
%F 10_1007_s10587_012_0014_9
Gu, Zhendong; Sun, Daochun. The growth of Dirichlet series. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 29-38. doi: 10.1007/s10587-012-0014-9

[1] Blambert, M.: Sur la notion de type de l'ordre d'une fonction entière. Ann. Sci. Éc. Norm. Supér, III. Sér. 79 (1962), 353-375 French. | DOI | MR | Zbl

[2] Bohr, H.: Collected Mathematical Works. Copenhagen (1952), 992. | Zbl

[3] Knopp, K.: Über de Konvergenzabszisse des Laplace-Integrals. Math. Z. 54 (1951), 291-296 German. | DOI | MR

[4] Mandelbrojt, S.: Séries de Dirichlet. Principle et Méthodes, Paris, Gauthier-Villars (1969), 165 French. | MR | Zbl

[5] Izumi, S.: Integral functions defined by Dirichlet's series. Japanese Journ. of Math. 6 (1929), 199-204. | DOI

[6] Ritt, J. F.: On certain points in the theory of Dirichlet series. Amer. J. 50 (1928), 73-86. | DOI | MR

[7] Sugimura, K.: Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen. M. Z. 29 (1928), 264-277 German. | DOI

[8] Tanaka, C.: Note on Dirichlet series. V: On the integral functions defined by Dirichlet series. (I.). Tôhoku Math. J., II. Ser. 5 (1953), 67-78. | DOI | MR | Zbl

[9] Valiron, G.: Sur la croissance du module maximum des séries entières. S. M. F. Bull. 44 (1916), 45-64 French. | MR

[10] Valiron, G.: Sur l'abscisse de convergence des séries de Dirichlet. S. M. F. Bull. 52 (1924), 166-174 French. | MR

[11] Valiron, G.: Entire functions and Borel's directions. Proc. Natl. Acad. Sci. USA 20 (1934), 211-215. | DOI | Zbl

[12] Valiron, G.: Théorie Générale des Séries de Dirichlet. Paris, Gauthier-Villars (Mémorial des sciences mathématiques, fasc. 17) (1926), French pp. 56.

[13] Yu, Ch.-Y.: Dirichlet series, Analytic functions of one complex variable. Contemp. Math., 48, Amer. Math. Soc., Providence, RI (1985), 201-216. | MR

[14] Yu, Ch.-Y.: Sur les droites de Borel de certaines fonctions entières. Ann. Sci. Éc. Norm. Supér, III. Sér. 68 (1951), 65-104 French. | DOI | MR | Zbl

[15] Yu, J.-R.: Some properties of random Dirichlet series. Acta Math. Sin. 21 (1978), 97-118 Chinese. | MR | Zbl

Cité par Sources :