On the structure of the augmentation quotient group for some nonabelian 2-groups
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 279-292
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite nonabelian group, ${\mathbb Z}G$ its associated integral group ring, and $\triangle (G)$ its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups $Q_{n}(G)=\triangle ^{n}(G)/\triangle ^{n+1}(G)$ is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.
Let $G$ be a finite nonabelian group, ${\mathbb Z}G$ its associated integral group ring, and $\triangle (G)$ its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups $Q_{n}(G)=\triangle ^{n}(G)/\triangle ^{n+1}(G)$ is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.
DOI : 10.1007/s10587-012-0013-x
Classification : 16S34, 20C05
Keywords: integral group ring; augmentation ideal; augmentation quotient groups; finite 2-group; semidihedral group
@article{10_1007_s10587_012_0013_x,
     author = {Nan, Jizhu and Zhao, Huifang},
     title = {On the structure of the augmentation quotient group for some nonabelian 2-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {279--292},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0013-x},
     mrnumber = {2899751},
     zbl = {1249.20004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0013-x/}
}
TY  - JOUR
AU  - Nan, Jizhu
AU  - Zhao, Huifang
TI  - On the structure of the augmentation quotient group for some nonabelian 2-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 279
EP  - 292
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0013-x/
DO  - 10.1007/s10587-012-0013-x
LA  - en
ID  - 10_1007_s10587_012_0013_x
ER  - 
%0 Journal Article
%A Nan, Jizhu
%A Zhao, Huifang
%T On the structure of the augmentation quotient group for some nonabelian 2-groups
%J Czechoslovak Mathematical Journal
%D 2012
%P 279-292
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0013-x/
%R 10.1007/s10587-012-0013-x
%G en
%F 10_1007_s10587_012_0013_x
Nan, Jizhu; Zhao, Huifang. On the structure of the augmentation quotient group for some nonabelian 2-groups. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 279-292. doi: 10.1007/s10587-012-0013-x

[1] Bachman, F., Grünenfelder, L.: The periodicity in the graded ring associated with an integral group ring. J. Pure Appl. Algebra 5 (1974), 253-264. | DOI | MR

[2] Bak, A., Tang, G. P.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion abelian groups. Adv. Math. 189 (2004), 1-37. | DOI | MR | Zbl

[3] Gorenstein, D.: Finite Groups, 2nd ed. New York: Chelsea Publishing Company (1980). | MR | Zbl

[4] Hales, A. W., Passi, I. B. S.: The augmentation quotients of finite Abelian $p$-groups. Contemp. Math. 93 (1989), 167-171. | DOI | MR | Zbl

[5] Parmenter, M. M.: A basis for powers of the augmentation ideal. Algebra Colloq. 8 (2001), 121-128. | MR | Zbl

[6] Passi, I. B. S.: Group Rings and Their Augmentation Ideals. Lecture Notes in Mathematics. 715, Springer-Verlag, Berlin (1979). | MR | Zbl

[7] Tang, G. P.: On a problem of Karpilovsky. Algebra Colloq. 10 (2003), 11-16. | DOI | MR | Zbl

[8] Zhao, H., Tang, G.: Structure of powers of augmentation ideals and their quotient groups for integral group rings of dihedral groups. Chinese J. Shaanxi Norm. Univ., Nat. Sci. Ed. 33 (2005), 18-21. | MR | Zbl

[9] Zhou, Q., You, H.: Augmentation quotients of the dihedral group. Chinese Chin. Ann. Math., Ser. A 31 (2010), 531-540. | MR | Zbl

[10] Zhou, Q., You, H.: On the structure of augmentation quotient groups for generalized quaternion group. Algebra Colloq (to appear).

Cité par Sources :