Keywords: symplectic $\mathcal A$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf
@article{10_1007_s10587_012_0012_y,
author = {Ntumba, Patrice P.},
title = {The symplectic {Gram-Schmidt} theorem and fundamental geometries for $\mathcal A$-modules},
journal = {Czechoslovak Mathematical Journal},
pages = {265--278},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0012-y},
mrnumber = {2899750},
zbl = {1249.18008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/}
}
TY - JOUR AU - Ntumba, Patrice P. TI - The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules JO - Czechoslovak Mathematical Journal PY - 2012 SP - 265 EP - 278 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/ DO - 10.1007/s10587-012-0012-y LA - en ID - 10_1007_s10587_012_0012_y ER -
%0 Journal Article %A Ntumba, Patrice P. %T The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules %J Czechoslovak Mathematical Journal %D 2012 %P 265-278 %V 62 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/ %R 10.1007/s10587-012-0012-y %G en %F 10_1007_s10587_012_0012_y
Ntumba, Patrice P. The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278. doi: 10.1007/s10587-012-0012-y
[1] Adkins, W. A., Weintraub, S. H.: Algebra. An Approach via Module Theory. Springer New York (1992). | MR | Zbl
[2] Artin, E.: Geometric Algebra. John Wiley & Sons/Interscience Publishers New York (1988). | MR | Zbl
[3] Berndt, R.: An Introduction to Symplectic Geometry. American Mathematical Society Providence (2001). | MR | Zbl
[4] Silva, A. Cannas da: Lectures on Symplectic Geometry. Springer Berlin (2001). | MR
[5] Chambadal, L., Ovaert, J. L.: Algèbre linéaire et algèbre tensorielle. Dunod Paris (1968). | MR | Zbl
[6] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Spinor Structures. Kluwer Dordrecht (1990). | MR | Zbl
[7] Gosson, M. de: Symplectic Geometry and Quantum Mechanics. Birkhäuser Basel (2006). | MR | Zbl
[8] Gruenberg, K. W., Weir, A. J.: Linear Geometry, 2nd edition. Springer New York, Heidelberg, Berlin (1977).
[9] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory. Kluwer Dordrecht (1998). | Zbl
[10] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications. Kluwer Dordrecht (1998). | Zbl
[11] Mallios, A.: $\mathcal{A}$-invariance: An axiomatic approach to quantum relativity. Int. J. Theor. Phys. 47 (2008), 1929-1948. | DOI | MR
[12] Mallios, A.: Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields. Birkhäuser Boston (2006). | MR
[13] Mallios, A., Ntumba, P. P.: On a sheaf-theoretic version of the Witt's decomposition theorem. A Lagrangian perspective. Rend. Circ. Mat. Palermo 58 (2009), 155-168. | DOI | MR | Zbl
[14] Mallios, A., Ntumba, P. P.: Fundamentals for symplectic $\mathcal{A}$-modules. Affine Darboux theorem. Rend. Circ. Mat. Palermo 58 (2009), 169-198. | MR
[15] Mallios, A., Ntumba, P. P.: Symplectic reduction of sheaves of $\mathcal{A}$-modules. \\arXiv:0802.4224.
[16] Mallios, A., Ntumba, P. P.: Pairings of sheaves of $\mathcal A$-modules. Quaest. Math. 31 (2008), 397-414. | DOI | MR
[17] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations. J. Diff. Geom. 14 (1979), 255-293. | DOI | MR | Zbl
[18] Ntumba, P. P.: Cartan-Dieudonné theorem for $\mathcal A$-modules. Mediterr. J. Math. 7 (2010), 445-454. | DOI | MR
[19] Sikorski, R.: Differential modules. Colloq. Math. 24 (1971), 45-79. | DOI | MR | Zbl
Cité par Sources :