The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank.
DOI :
10.1007/s10587-012-0012-y
Classification :
16D90, 16S60, 18F20
Keywords: symplectic $\mathcal A$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf
Keywords: symplectic $\mathcal A$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf
@article{10_1007_s10587_012_0012_y,
author = {Ntumba, Patrice P.},
title = {The symplectic {Gram-Schmidt} theorem and fundamental geometries for $\mathcal A$-modules},
journal = {Czechoslovak Mathematical Journal},
pages = {265--278},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2012},
doi = {10.1007/s10587-012-0012-y},
mrnumber = {2899750},
zbl = {1249.18008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/}
}
TY - JOUR AU - Ntumba, Patrice P. TI - The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules JO - Czechoslovak Mathematical Journal PY - 2012 SP - 265 EP - 278 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/ DO - 10.1007/s10587-012-0012-y LA - en ID - 10_1007_s10587_012_0012_y ER -
%0 Journal Article %A Ntumba, Patrice P. %T The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules %J Czechoslovak Mathematical Journal %D 2012 %P 265-278 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/ %R 10.1007/s10587-012-0012-y %G en %F 10_1007_s10587_012_0012_y
Ntumba, Patrice P. The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278. doi: 10.1007/s10587-012-0012-y
Cité par Sources :