The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank.
Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf $\mathcal A$ is appropriately chosen) shows that symplectic $\mathcal A$-morphisms on free $\mathcal A$-modules of finite rank, defined on a topological space $X$, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if $(\mathcal {E}, \phi )$ is an $\mathcal A$-module (with respect to a $\mathbb C$-algebra sheaf $\mathcal A$ without zero divisors) equipped with an orthosymmetric $\mathcal A$-morphism, we show, like in the classical situation, that “componentwise” $\phi $ is either symmetric (the (local) geometry is orthogonal) or skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical case for any free $\mathcal A$-module of finite rank.
DOI : 10.1007/s10587-012-0012-y
Classification : 16D90, 16S60, 18F20
Keywords: symplectic $\mathcal A$-modules; symplectic Gram-Schmidt theorem; symplectic basis; orthosymmetric $\mathcal {A}$-bilinear forms; orthogonal/symplectic geometry; strict integral domain algebra sheaf
@article{10_1007_s10587_012_0012_y,
     author = {Ntumba, Patrice P.},
     title = {The symplectic {Gram-Schmidt} theorem and fundamental geometries for $\mathcal A$-modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {265--278},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0012-y},
     mrnumber = {2899750},
     zbl = {1249.18008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/}
}
TY  - JOUR
AU  - Ntumba, Patrice P.
TI  - The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 265
EP  - 278
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/
DO  - 10.1007/s10587-012-0012-y
LA  - en
ID  - 10_1007_s10587_012_0012_y
ER  - 
%0 Journal Article
%A Ntumba, Patrice P.
%T The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules
%J Czechoslovak Mathematical Journal
%D 2012
%P 265-278
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0012-y/
%R 10.1007/s10587-012-0012-y
%G en
%F 10_1007_s10587_012_0012_y
Ntumba, Patrice P. The symplectic Gram-Schmidt theorem and fundamental geometries for $\mathcal A$-modules. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 265-278. doi: 10.1007/s10587-012-0012-y

[1] Adkins, W. A., Weintraub, S. H.: Algebra. An Approach via Module Theory. Springer New York (1992). | MR | Zbl

[2] Artin, E.: Geometric Algebra. John Wiley & Sons/Interscience Publishers New York (1988). | MR | Zbl

[3] Berndt, R.: An Introduction to Symplectic Geometry. American Mathematical Society Providence (2001). | MR | Zbl

[4] Silva, A. Cannas da: Lectures on Symplectic Geometry. Springer Berlin (2001). | MR

[5] Chambadal, L., Ovaert, J. L.: Algèbre linéaire et algèbre tensorielle. Dunod Paris (1968). | MR | Zbl

[6] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Spinor Structures. Kluwer Dordrecht (1990). | MR | Zbl

[7] Gosson, M. de: Symplectic Geometry and Quantum Mechanics. Birkhäuser Basel (2006). | MR | Zbl

[8] Gruenberg, K. W., Weir, A. J.: Linear Geometry, 2nd edition. Springer New York, Heidelberg, Berlin (1977).

[9] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory. Kluwer Dordrecht (1998). | Zbl

[10] Mallios, A.: Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications. Kluwer Dordrecht (1998). | Zbl

[11] Mallios, A.: $\mathcal{A}$-invariance: An axiomatic approach to quantum relativity. Int. J. Theor. Phys. 47 (2008), 1929-1948. | DOI | MR

[12] Mallios, A.: Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields. Birkhäuser Boston (2006). | MR

[13] Mallios, A., Ntumba, P. P.: On a sheaf-theoretic version of the Witt's decomposition theorem. A Lagrangian perspective. Rend. Circ. Mat. Palermo 58 (2009), 155-168. | DOI | MR | Zbl

[14] Mallios, A., Ntumba, P. P.: Fundamentals for symplectic $\mathcal{A}$-modules. Affine Darboux theorem. Rend. Circ. Mat. Palermo 58 (2009), 169-198. | MR

[15] Mallios, A., Ntumba, P. P.: Symplectic reduction of sheaves of $\mathcal{A}$-modules. \\arXiv:0802.4224.

[16] Mallios, A., Ntumba, P. P.: Pairings of sheaves of $\mathcal A$-modules. Quaest. Math. 31 (2008), 397-414. | DOI | MR

[17] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations. J. Diff. Geom. 14 (1979), 255-293. | DOI | MR | Zbl

[18] Ntumba, P. P.: Cartan-Dieudonné theorem for $\mathcal A$-modules. Mediterr. J. Math. 7 (2010), 445-454. | DOI | MR

[19] Sikorski, R.: Differential modules. Colloq. Math. 24 (1971), 45-79. | DOI | MR | Zbl

Cité par Sources :