Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
DOI :
10.1007/s10587-012-0009-6
Classification :
26A39, 28B05, 46G10
Keywords: Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
Keywords: Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
@article{10_1007_s10587_012_0009_6,
author = {Kaliaj, Sokol B. and Tato, Agron D. and Gumeni, Fatmir D.},
title = {Controlled convergence theorems for {Henstock-Kurzweil-Pettis} integral on $m$-dimensional compact intervals},
journal = {Czechoslovak Mathematical Journal},
pages = {243--255},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0009-6},
mrnumber = {2899748},
zbl = {1249.28017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/}
}
TY - JOUR AU - Kaliaj, Sokol B. AU - Tato, Agron D. AU - Gumeni, Fatmir D. TI - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals JO - Czechoslovak Mathematical Journal PY - 2012 SP - 243 EP - 255 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/ DO - 10.1007/s10587-012-0009-6 LA - en ID - 10_1007_s10587_012_0009_6 ER -
%0 Journal Article %A Kaliaj, Sokol B. %A Tato, Agron D. %A Gumeni, Fatmir D. %T Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals %J Czechoslovak Mathematical Journal %D 2012 %P 243-255 %V 62 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/ %R 10.1007/s10587-012-0009-6 %G en %F 10_1007_s10587_012_0009_6
Kaliaj, Sokol B.; Tato, Agron D.; Gumeni, Fatmir D. Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255. doi: 10.1007/s10587-012-0009-6
Cité par Sources :