Keywords: Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
@article{10_1007_s10587_012_0009_6,
author = {Kaliaj, Sokol B. and Tato, Agron D. and Gumeni, Fatmir D.},
title = {Controlled convergence theorems for {Henstock-Kurzweil-Pettis} integral on $m$-dimensional compact intervals},
journal = {Czechoslovak Mathematical Journal},
pages = {243--255},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0009-6},
mrnumber = {2899748},
zbl = {1249.28017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/}
}
TY - JOUR AU - Kaliaj, Sokol B. AU - Tato, Agron D. AU - Gumeni, Fatmir D. TI - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals JO - Czechoslovak Mathematical Journal PY - 2012 SP - 243 EP - 255 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/ DO - 10.1007/s10587-012-0009-6 LA - en ID - 10_1007_s10587_012_0009_6 ER -
%0 Journal Article %A Kaliaj, Sokol B. %A Tato, Agron D. %A Gumeni, Fatmir D. %T Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals %J Czechoslovak Mathematical Journal %D 2012 %P 243-255 %V 62 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/ %R 10.1007/s10587-012-0009-6 %G en %F 10_1007_s10587_012_0009_6
Kaliaj, Sokol B.; Tato, Agron D.; Gumeni, Fatmir D. Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255. doi: 10.1007/s10587-012-0009-6
[1] Cichoń, M.: Convergence theorems for the Henstock-Kurzweil-Pettis integral. Acta Math. Hung. 92 (2001), 75-82. | DOI | MR | Zbl
[2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. | DOI | MR
[3] Piazza, L. Di: Kurzweil-Henstock type integration on Banach spaces. Real Anal. Exch. 29 (2003-2004), 543-556. | MR
[4] Fremlin, D. H.: Pointwise compact sets of measurable functions. Manuscr. Math. 15 (1975), 219-242. | DOI | MR | Zbl
[5] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. | MR | Zbl
[6] Guoju, Y., Tianqing, A.: On Henstock-Dunford and Henstock-Pettis integrals. Int. J. Math. Sci. 25 (2001), 467-478. | DOI | MR
[7] Guoju, Y.: On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals. Rocky Mt. J. Math. 39 (2009), 1233-1244. | DOI | MR | Zbl
[8] James, R.: Weak compactness and reflexivity. Isr. J. Math. 2 (1964), 101-119. | DOI | MR | Zbl
[9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1992), 110-139. | DOI | Zbl
[10] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. | MR | Zbl
[11] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. | MR | Zbl
[12] Musiał, K.: Pettis integral. Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. | MR | Zbl
[13] Schaefer, H. H.: Topological Vector Spaces. Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. | MR | Zbl
[14] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. | MR
Cité par Sources :