Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
DOI : 10.1007/s10587-012-0009-6
Classification : 26A39, 28B05, 46G10
Keywords: Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
@article{10_1007_s10587_012_0009_6,
     author = {Kaliaj, Sokol B. and Tato, Agron D. and Gumeni, Fatmir D.},
     title = {Controlled convergence theorems for {Henstock-Kurzweil-Pettis} integral on $m$-dimensional compact intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {243--255},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0009-6},
     mrnumber = {2899748},
     zbl = {1249.28017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/}
}
TY  - JOUR
AU  - Kaliaj, Sokol B.
AU  - Tato, Agron D.
AU  - Gumeni, Fatmir D.
TI  - Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 243
EP  - 255
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/
DO  - 10.1007/s10587-012-0009-6
LA  - en
ID  - 10_1007_s10587_012_0009_6
ER  - 
%0 Journal Article
%A Kaliaj, Sokol B.
%A Tato, Agron D.
%A Gumeni, Fatmir D.
%T Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals
%J Czechoslovak Mathematical Journal
%D 2012
%P 243-255
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0009-6/
%R 10.1007/s10587-012-0009-6
%G en
%F 10_1007_s10587_012_0009_6
Kaliaj, Sokol B.; Tato, Agron D.; Gumeni, Fatmir D. Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 243-255. doi: 10.1007/s10587-012-0009-6

[1] Cichoń, M.: Convergence theorems for the Henstock-Kurzweil-Pettis integral. Acta Math. Hung. 92 (2001), 75-82. | DOI | MR | Zbl

[2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. | DOI | MR

[3] Piazza, L. Di: Kurzweil-Henstock type integration on Banach spaces. Real Anal. Exch. 29 (2003-2004), 543-556. | MR

[4] Fremlin, D. H.: Pointwise compact sets of measurable functions. Manuscr. Math. 15 (1975), 219-242. | DOI | MR | Zbl

[5] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. | MR | Zbl

[6] Guoju, Y., Tianqing, A.: On Henstock-Dunford and Henstock-Pettis integrals. Int. J. Math. Sci. 25 (2001), 467-478. | DOI | MR

[7] Guoju, Y.: On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals. Rocky Mt. J. Math. 39 (2009), 1233-1244. | DOI | MR | Zbl

[8] James, R.: Weak compactness and reflexivity. Isr. J. Math. 2 (1964), 101-119. | DOI | MR | Zbl

[9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1992), 110-139. | DOI | Zbl

[10] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. | MR | Zbl

[11] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. | MR | Zbl

[12] Musiał, K.: Pettis integral. Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. | MR | Zbl

[13] Schaefer, H. H.: Topological Vector Spaces. Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. | MR | Zbl

[14] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. | MR

Cité par Sources :