Some remarks on Nagumo's theorem
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 235-242
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide a simpler proof for a recent generalization of Nagumo's uniqueness theorem by A. Constantin: On Nagumo's theorem. Proc. Japan Acad., Ser. A 86 (2010), 41–44, for the differential equation $x'=f(t,x)$, $ x(0)=0$ and we show that not only is the solution unique but the Picard successive approximations converge to the unique solution. The proof is based on an approach that was developed in Z. S. Athanassov: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351–367. Some classical existence and uniqueness results for initial-value problems for ordinary differential equations are particular cases of our result.
We provide a simpler proof for a recent generalization of Nagumo's uniqueness theorem by A. Constantin: On Nagumo's theorem. Proc. Japan Acad., Ser. A 86 (2010), 41–44, for the differential equation $x'=f(t,x)$, $ x(0)=0$ and we show that not only is the solution unique but the Picard successive approximations converge to the unique solution. The proof is based on an approach that was developed in Z. S. Athanassov: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351–367. Some classical existence and uniqueness results for initial-value problems for ordinary differential equations are particular cases of our result.
DOI : 10.1007/s10587-012-0008-7
Classification : 34A12, 34A34, 34A45
Keywords: ordinary differential equation; uniqueness
@article{10_1007_s10587_012_0008_7,
     author = {Mejstrik, Thomas},
     title = {Some remarks on {Nagumo's} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {235--242},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0008-7},
     mrnumber = {2899747},
     zbl = {1249.34021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0008-7/}
}
TY  - JOUR
AU  - Mejstrik, Thomas
TI  - Some remarks on Nagumo's theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 235
EP  - 242
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0008-7/
DO  - 10.1007/s10587-012-0008-7
LA  - en
ID  - 10_1007_s10587_012_0008_7
ER  - 
%0 Journal Article
%A Mejstrik, Thomas
%T Some remarks on Nagumo's theorem
%J Czechoslovak Mathematical Journal
%D 2012
%P 235-242
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0008-7/
%R 10.1007/s10587-012-0008-7
%G en
%F 10_1007_s10587_012_0008_7
Mejstrik, Thomas. Some remarks on Nagumo's theorem. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 235-242. doi: 10.1007/s10587-012-0008-7

[1] Agarwal, R. P., Heikkilä, S.: Uniqueness and well-posedness results for first order initial and boundary value problems. Acta Math. Hung. 94 (2002), 67-92. | DOI | MR | Zbl

[2] Athanassov, Z. S.: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351-367. | MR | Zbl

[3] Bellman, R.: Stability Theory of Differential Equations. New York-London: McGraw-Hill Book Company (1953), (166). | MR

[4] Constantin, A.: Solutions globales d'équations différentielles perturbées. C. R. Acad. Sci., Paris, Sér. I 320 (1995), 1319-1322. | MR | Zbl

[5] Constantin, A.: On Nagumo's theorem. Proc. Japan Acad., Ser. A 86 (2010), 41-44. | MR | Zbl

[6] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Boston: D. C. Heath and Company (1965), 166. | MR | Zbl

[7] Lipovan, O.: A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 252 (2000), 389-401. | DOI | MR | Zbl

[8] Nagumo, M.: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung. Japanese Journ. of Math. 3 (1926), 107-112. | DOI

[9] Negrea, R.: On a class of backward stochastic differential equations and applications to the stochastic resonance. "Recent advances in stochastic modeling and data analysis", pp. 26-33, World Sci. Publ., Hackensack, NJ, 2007. | MR

[10] Sonoc, C.: On the pathwise uniqueness of solutions of stochastic differential equations. Port. Math. 55 (1998), 451-456. | MR | Zbl

Cité par Sources :