Keywords: ordinary differential equation; uniqueness
@article{10_1007_s10587_012_0008_7,
author = {Mejstrik, Thomas},
title = {Some remarks on {Nagumo's} theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {235--242},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0008-7},
mrnumber = {2899747},
zbl = {1249.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0008-7/}
}
Mejstrik, Thomas. Some remarks on Nagumo's theorem. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 235-242. doi: 10.1007/s10587-012-0008-7
[1] Agarwal, R. P., Heikkilä, S.: Uniqueness and well-posedness results for first order initial and boundary value problems. Acta Math. Hung. 94 (2002), 67-92. | DOI | MR | Zbl
[2] Athanassov, Z. S.: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351-367. | MR | Zbl
[3] Bellman, R.: Stability Theory of Differential Equations. New York-London: McGraw-Hill Book Company (1953), (166). | MR
[4] Constantin, A.: Solutions globales d'équations différentielles perturbées. C. R. Acad. Sci., Paris, Sér. I 320 (1995), 1319-1322. | MR | Zbl
[5] Constantin, A.: On Nagumo's theorem. Proc. Japan Acad., Ser. A 86 (2010), 41-44. | MR | Zbl
[6] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Boston: D. C. Heath and Company (1965), 166. | MR | Zbl
[7] Lipovan, O.: A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 252 (2000), 389-401. | DOI | MR | Zbl
[8] Nagumo, M.: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung. Japanese Journ. of Math. 3 (1926), 107-112. | DOI
[9] Negrea, R.: On a class of backward stochastic differential equations and applications to the stochastic resonance. "Recent advances in stochastic modeling and data analysis", pp. 26-33, World Sci. Publ., Hackensack, NJ, 2007. | MR
[10] Sonoc, C.: On the pathwise uniqueness of solutions of stochastic differential equations. Port. Math. 55 (1998), 451-456. | MR | Zbl
Cité par Sources :