Ordering the non-starlike trees with large reverse Wiener indices
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 215-233
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac {1}{2}n(n-1)d-W(G), \] where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.
The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac {1}{2}n(n-1)d-W(G), \] where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$.
DOI : 10.1007/s10587-012-0007-8
Classification : 05C12, 05C35, 05C90
Keywords: distance; diameter; Wiener index; reverse Wiener index; trees; starlike trees; caterpillars
@article{10_1007_s10587_012_0007_8,
     author = {Li, Shuxian and Zhou, Bo},
     title = {Ordering the non-starlike trees with large reverse {Wiener} indices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {215--233},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0007-8},
     mrnumber = {2899746},
     zbl = {1249.05097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0007-8/}
}
TY  - JOUR
AU  - Li, Shuxian
AU  - Zhou, Bo
TI  - Ordering the non-starlike trees with large reverse Wiener indices
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 215
EP  - 233
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0007-8/
DO  - 10.1007/s10587-012-0007-8
LA  - en
ID  - 10_1007_s10587_012_0007_8
ER  - 
%0 Journal Article
%A Li, Shuxian
%A Zhou, Bo
%T Ordering the non-starlike trees with large reverse Wiener indices
%J Czechoslovak Mathematical Journal
%D 2012
%P 215-233
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0007-8/
%R 10.1007/s10587-012-0007-8
%G en
%F 10_1007_s10587_012_0007_8
Li, Shuxian; Zhou, Bo. Ordering the non-starlike trees with large reverse Wiener indices. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 215-233. doi: 10.1007/s10587-012-0007-8

[1] Althöfer, I.: Average distances in undirected graphs and the removal of vertices. J. Comb. Theory, Ser. B 48 (1990), 140-142. | DOI | MR | Zbl

[2] Balaban, A. T., Mills, D., Ivanciuc, O., Basak, S. C.: Reverse Wiener indices. Croat. Chem. Acta 73 (2000), 923-941.

[3] Cai, X., Zhou, B.: Reverse Wiener indices of connected graphs. MATCH Commun. Math. Comput. Chem. 60 (2008), 95-105. | MR

[4] Chung, F. R. K.: The average distance and the independence number. J. Graph Theory 12 (1988), 229-235. | DOI | MR | Zbl

[5] Dankelmann, P., Mukwembi, S., Swart, H. C.: Average distance and vertex-connectivity. J. Graph Theory 62 (2009), 157-177. | DOI | MR | Zbl

[6] Dobrynin, A. A., Entringer, R., Gutman, I.: Wiener index of trees: Theory and applications. Acta Appl. Math. 66 (2001), 211-249. | DOI | MR | Zbl

[7] Du, Z., Zhou, B.: A note on Wiener indices of unicyclic graphs. Ars Comb. 93 (2009), 97-103. | MR | Zbl

[8] Du, Z., Zhou, B.: Minimum on Wiener indices of trees and unicyclic graphs of given matching number. MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. | MR

[9] Du, Z., Zhou, B.: On the reverse Wiener indices of unicyclic graphs. Acta Appl. Math. 106 (2009), 293-306. | DOI | MR | Zbl

[10] Entringer, R. C., Jackson, D. E., Snyder, D. A.: Distance in graphs. Czech. Math. J. 26 (1976), 283-296. | MR | Zbl

[11] Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Japan 44 (1971), 2332-2339. | DOI

[12] Ivanciuc, O., Ivanciuc, T., Balaban, A. T.: Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices. Internet Electron. J. Mol. Des. 1 (2002), 467-487.

[13] Luo, W., Zhou, B.: Further properties of reverse Wiener index. MATCH Commun. Math. Comput. Chem. 61 (2009), 653-661. | MR | Zbl

[14] Luo, W., Zhou, B.: On ordinary and reverse Wiener indices of non-caterpillars. Math. Comput. Modelling 50 (2009), 188-193. | DOI | MR | Zbl

[15] Luo, W., Zhou, B., Trinajstić, N., Du, Z.: Reverse Wiener indices of graphs of exactly two cycles. Util. Math., in press.

[16] Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: Development and applications. Croat. Chem. Acta 68 (1995), 105-128.

[17] Plesník, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8 (1984), 1-21. | DOI | MR | Zbl

[18] Rouvray, D. H.: The rich legacy of half a century of the Wiener index. D. H. Rouvray and R. B. King Topology in Chemistry-Discrete Mathematics of Molecules, Norwood, Chichester (2002), 16-37.

[19] Trinajstić, N.: Chemical Graph Theory, 2nd revised edn. CRC press, Boca Raton (1992), 241-245. | MR

[20] Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17-20. | DOI

[21] Zhang, B., Zhou, B.: On modified and reverse Wiener indices of trees. Z. Naturforsch. 61a (2006), 536-540. | DOI | MR

[22] Zhou, B., Trinajstić, N.: Mathematical properties of molecular descriptors based on distances. Croat. Chem. Acta 83 (2010), 227-242.

[23] Zhou, B.: Reverse Wiener index. I. Gutman and B. Furtula Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac (2010), 193-204. | Zbl

Cité par Sources :