The Laplacian spread of graphs
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 155-168 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.
The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.
DOI : 10.1007/s10587-012-0003-z
Classification : 05C50, 15A18
Keywords: Laplacian eigenvalues; spread
@article{10_1007_s10587_012_0003_z,
     author = {You, Zhifu and Liu, BoLian},
     title = {The {Laplacian} spread of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--168},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0003-z},
     mrnumber = {2899742},
     zbl = {1245.05089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0003-z/}
}
TY  - JOUR
AU  - You, Zhifu
AU  - Liu, BoLian
TI  - The Laplacian spread of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 155
EP  - 168
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0003-z/
DO  - 10.1007/s10587-012-0003-z
LA  - en
ID  - 10_1007_s10587_012_0003_z
ER  - 
%0 Journal Article
%A You, Zhifu
%A Liu, BoLian
%T The Laplacian spread of graphs
%J Czechoslovak Mathematical Journal
%D 2012
%P 155-168
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0003-z/
%R 10.1007/s10587-012-0003-z
%G en
%F 10_1007_s10587_012_0003_z
You, Zhifu; Liu, BoLian. The Laplacian spread of graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 155-168. doi: 10.1007/s10587-012-0003-z

[1] Bao, Y. H., Tan, Y. Y., Fan, Y. Z.: The Laplacian spread of unicyclic graphs. Appl. Math. Lett. 22 (2009), 1011-1015. | DOI | MR | Zbl

[2] Chen, Y., Wang, L.: The Laplacian spread of tricyclic graphs. Electron. J. Comb. 16 (2009), R80. | DOI | MR | Zbl

[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. VEB Deutscher Verlag der Wissenschaften Berlin (1980). | Zbl

[4] Das, K. C.: The Laplacian spectrum of a graph. Comput. Math. Appl. 48 (2004), 715-724. | DOI | MR | Zbl

[5] Dam, E. R. van, Haemers, W. H.: Graphs with constant $\mu$ and $\overline{\mu}$. Discrete Math. 182 (1998), 293-307. | DOI | MR

[6] Fan, Y. Z., Xu, J., Wang, Y., Liang, D.: The Laplacian spread of a tree. Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only. | MR | Zbl

[7] Fan, Y., Li, S., Tan, Y.: The Laplacian spread of bicyclic graphs. J. Math. Res. Expo. 30 (2010), 17-28. | MR

[8] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 98-305. | MR | Zbl

[9] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. | DOI | MR | Zbl

[10] Gregory, D. A., Hershkowitz, D., Kirkland, S. J.: The spread of the spectrum of a graph. Linear Algebra Appl. 332-334 (2001), 23-35. | MR | Zbl

[11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-239. | DOI | MR | Zbl

[12] Grone, R., Merris, R.: The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | Zbl

[13] Hong, Y., Shu, J. L.: A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type. Discrete Math. 211 (2000), 229-232. | DOI | MR | Zbl

[14] Lazić, M.: On the Laplacian energy of a graph. Czech. Math. J. 56 (2006), 1207-1213. | DOI | MR | Zbl

[15] Li, J., Shiu, W. C., Chan, W. H.: Some results on the Laplacian eigenvalues of unicyclic graphs. Linear Algebra Appl. 430 (2009), 2080-2093. | MR | Zbl

[16] Li, P., Shi, J. S., Li, R. L.: Laplacian spread of bicyclic graphs. J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese. | MR

[17] Liu, H., Lu, M., Tian, F.: On the Laplacian spectral radius of a graph. Linear Algebra Appl. 376 (2004), 135-141. | MR | Zbl

[18] Liu, B., Liu, M.-H.: On the spread of the spectrum of a graph. Discrete Math. 309 (2009), 2727-2732. | DOI | MR | Zbl

[19] Lu, M., Liu, H., Tian, F.: Laplacian spectral bounds for clique and independence numbers of graphs. J. Comb. Theory, Ser. B 97 (2007), 726-732. | DOI | MR | Zbl

[20] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl

[21] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs. Am. Math. Mon. 63 (1956), 175-177. | DOI | MR | Zbl

[22] Ozeki, N.: On the estimation of the inequality by the maximum. J. College Arts Chiba Univ. 5 (1968), 199-203. | MR

[23] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs. Linear Algebra Appl. 422 (2007), 755-770. | DOI | MR | Zbl

[24] You, Z., Liu, B.: The minimum Laplacian spread of unicyclic graphs. Linear Algebra Appl. 432 (2010), 499-504. | DOI | MR | Zbl

[25] Zhang, X.: On the two conjectures of Graffiti. Linear Algebra Appl. 385 (2004), 369-379. | MR | Zbl

[26] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. | DOI | MR | Zbl

Cité par Sources :