On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 139-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri and B. Ricceri we prove existence results improving earlier theorems by Gupta and Marano.
We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri and B. Ricceri we prove existence results improving earlier theorems by Gupta and Marano.
DOI : 10.1007/s10587-012-0002-0
Classification : 05C35, 34A60, 34B05, 34B27, 49J30
Keywords: differential equations; differential inclusions; multipoint boundary value problems; bang-bang controls; Green functions
@article{10_1007_s10587_012_0002_0,
     author = {Gomaa, Adel Mahmoud},
     title = {On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints},
     journal = {Czechoslovak Mathematical Journal},
     pages = {139--154},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0002-0},
     mrnumber = {2899741},
     zbl = {1249.34053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/}
}
TY  - JOUR
AU  - Gomaa, Adel Mahmoud
TI  - On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 139
EP  - 154
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/
DO  - 10.1007/s10587-012-0002-0
LA  - en
ID  - 10_1007_s10587_012_0002_0
ER  - 
%0 Journal Article
%A Gomaa, Adel Mahmoud
%T On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints
%J Czechoslovak Mathematical Journal
%D 2012
%P 139-154
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/
%R 10.1007/s10587-012-0002-0
%G en
%F 10_1007_s10587_012_0002_0
Gomaa, Adel Mahmoud. On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 139-154. doi: 10.1007/s10587-012-0002-0

[1] Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin (1984). | MR | Zbl

[2] Benamara, M.: "Point Extrémaux, Multi-applications et Fonctionelles Intégrales". Thése de 3éme Cycle, Université de Grenoble (1975).

[3] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90 (1988), 69-86. | DOI | MR | Zbl

[4] Brown, L. D., Purves, R.: Measurable selections of extrema. Ann. Stat. 1 (1973), 902-912. | DOI | MR | Zbl

[5] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, 580. Springer Verlag, Berlin-Heidelberg-New York (1977). | DOI | MR | Zbl

[6] Gomaa, A. M.: On the solution sets of four-point boundary value problems for nonconvex differential inclusions. Int. J. Geom. Methods Mod. Phys. 8 (2011), 23-37. | DOI | MR | Zbl

[7] Gupta, Ch. P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551. | DOI | MR | Zbl

[8] Ibrahim, A. G., Gomaa, A. M.: Extremal solutions of classes of multivalued differential equations. Appl. Math. Comput. 136 (2003), 297-314. | DOI | MR | Zbl

[9] Klein, E., Thompson, A.: Theory of Correspondences. Including Applications to Mathematical Economic. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. New York, John Wiley & Sons (1984). | MR

[10] Marano, S. A.: A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522. | DOI | MR | Zbl

[11] Tolstonogov, A. A.: Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Sov. Math. Dokl. 43 (1991), 481-485 Translation from Dokl. Akad. Nauk SSSR 317 (1991), 589-593. | MR | Zbl

[12] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions. Int. J. Math. Math. Sci. 10 (1987), 433-442. | DOI | MR | Zbl

[13] Papageorgiou, N. S., Kravvaritis, D.: Boundary value problems for nonconvex differential inclusions. J. Math. Anal. Appl. 185 (1994), 146-160. | DOI | MR | Zbl

[14] Papageorgiou, N. S.: On measurable multifunction with applications to random multivalued equations. Math. Jap. 32 (1987), 437-464. | MR

[15] Ricceri, O. N., Ricceri, B.: An existence theorem for inclusions of the type $\Psi (u)(t) \in F(t, \Phi (u)(t))$ and an application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. | DOI | MR

Cité par Sources :