Keywords: differential equations; differential inclusions; multipoint boundary value problems; bang-bang controls; Green functions
@article{10_1007_s10587_012_0002_0,
author = {Gomaa, Adel Mahmoud},
title = {On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints},
journal = {Czechoslovak Mathematical Journal},
pages = {139--154},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0002-0},
mrnumber = {2899741},
zbl = {1249.34053},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/}
}
TY - JOUR AU - Gomaa, Adel Mahmoud TI - On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints JO - Czechoslovak Mathematical Journal PY - 2012 SP - 139 EP - 154 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/ DO - 10.1007/s10587-012-0002-0 LA - en ID - 10_1007_s10587_012_0002_0 ER -
%0 Journal Article %A Gomaa, Adel Mahmoud %T On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints %J Czechoslovak Mathematical Journal %D 2012 %P 139-154 %V 62 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0002-0/ %R 10.1007/s10587-012-0002-0 %G en %F 10_1007_s10587_012_0002_0
Gomaa, Adel Mahmoud. On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 139-154. doi: 10.1007/s10587-012-0002-0
[1] Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin (1984). | MR | Zbl
[2] Benamara, M.: "Point Extrémaux, Multi-applications et Fonctionelles Intégrales". Thése de 3éme Cycle, Université de Grenoble (1975).
[3] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90 (1988), 69-86. | DOI | MR | Zbl
[4] Brown, L. D., Purves, R.: Measurable selections of extrema. Ann. Stat. 1 (1973), 902-912. | DOI | MR | Zbl
[5] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, 580. Springer Verlag, Berlin-Heidelberg-New York (1977). | DOI | MR | Zbl
[6] Gomaa, A. M.: On the solution sets of four-point boundary value problems for nonconvex differential inclusions. Int. J. Geom. Methods Mod. Phys. 8 (2011), 23-37. | DOI | MR | Zbl
[7] Gupta, Ch. P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551. | DOI | MR | Zbl
[8] Ibrahim, A. G., Gomaa, A. M.: Extremal solutions of classes of multivalued differential equations. Appl. Math. Comput. 136 (2003), 297-314. | DOI | MR | Zbl
[9] Klein, E., Thompson, A.: Theory of Correspondences. Including Applications to Mathematical Economic. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. New York, John Wiley & Sons (1984). | MR
[10] Marano, S. A.: A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522. | DOI | MR | Zbl
[11] Tolstonogov, A. A.: Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Sov. Math. Dokl. 43 (1991), 481-485 Translation from Dokl. Akad. Nauk SSSR 317 (1991), 589-593. | MR | Zbl
[12] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions. Int. J. Math. Math. Sci. 10 (1987), 433-442. | DOI | MR | Zbl
[13] Papageorgiou, N. S., Kravvaritis, D.: Boundary value problems for nonconvex differential inclusions. J. Math. Anal. Appl. 185 (1994), 146-160. | DOI | MR | Zbl
[14] Papageorgiou, N. S.: On measurable multifunction with applications to random multivalued equations. Math. Jap. 32 (1987), 437-464. | MR
[15] Ricceri, O. N., Ricceri, B.: An existence theorem for inclusions of the type $\Psi (u)(t) \in F(t, \Phi (u)(t))$ and an application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. | DOI | MR
Cité par Sources :