Exponents for three-dimensional simultaneous Diophantine approximations
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 127-137
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb {R}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb {Z}$. For Diophantine exponents $$ \begin {aligned} \alpha (\Theta ) = \sup \{\gamma >0\colon \limsup _{t\to +\infty } t^\gamma \psi _\Theta (t) +\infty \},\\ \beta (\Theta ) = \sup \{\gamma >0\colon \liminf _{t\to +\infty } t^\gamma \psi _\Theta (t)+\infty \} \end {aligned} $$ we prove $$ \beta (\Theta ) \ge \frac {1}{2} \Bigg ( \frac {\alpha (\Theta )}{1-\alpha (\Theta )} +\sqrt {\Big (\frac {\alpha (\Theta )}{1-\alpha (\Theta )} \Big )^2 +\frac {4\alpha (\Theta )}{1-\alpha (\Theta )}} \Bigg ) \alpha (\Theta ). $$
DOI :
10.1007/s10587-012-0001-1
Classification :
11J13
Keywords: Diophantine approximations; Diophantine exponents; Jarník's transference principle
Keywords: Diophantine approximations; Diophantine exponents; Jarník's transference principle
@article{10_1007_s10587_012_0001_1,
author = {Moshchevitin, Nikolay},
title = {Exponents for three-dimensional simultaneous {Diophantine} approximations},
journal = {Czechoslovak Mathematical Journal},
pages = {127--137},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2012},
doi = {10.1007/s10587-012-0001-1},
mrnumber = {2899740},
zbl = {1249.11061},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0001-1/}
}
TY - JOUR AU - Moshchevitin, Nikolay TI - Exponents for three-dimensional simultaneous Diophantine approximations JO - Czechoslovak Mathematical Journal PY - 2012 SP - 127 EP - 137 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0001-1/ DO - 10.1007/s10587-012-0001-1 LA - en ID - 10_1007_s10587_012_0001_1 ER -
%0 Journal Article %A Moshchevitin, Nikolay %T Exponents for three-dimensional simultaneous Diophantine approximations %J Czechoslovak Mathematical Journal %D 2012 %P 127-137 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0001-1/ %R 10.1007/s10587-012-0001-1 %G en %F 10_1007_s10587_012_0001_1
Moshchevitin, Nikolay. Exponents for three-dimensional simultaneous Diophantine approximations. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 127-137. doi: 10.1007/s10587-012-0001-1
Cité par Sources :