$L^\infty$ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 389-400
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$ $(q>1)$, and the case $\alpha +\beta m-1$.
In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$ $(q>1)$, and the case $\alpha +\beta m-1$.
DOI :
10.1007/s10587-011-0083-1
Classification :
35A01, 35A02, 35B45, 35D30, 35K20, 35K65, 35K92
Keywords: $m$-Laplacian parabolic equations; global existence; uniqueness; $L^{\infty }$ estimates
Keywords: $m$-Laplacian parabolic equations; global existence; uniqueness; $L^{\infty }$ estimates
@article{10_1007_s10587_011_0083_1,
author = {Hou, Pulun and Chen, Caisheng},
title = {$L^\infty$ estimates of solution for $m${-Laplacian} parabolic equation with a nonlocal term},
journal = {Czechoslovak Mathematical Journal},
pages = {389--400},
year = {2011},
volume = {61},
number = {2},
doi = {10.1007/s10587-011-0083-1},
mrnumber = {2905412},
zbl = {1249.35177},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0083-1/}
}
TY - JOUR AU - Hou, Pulun AU - Chen, Caisheng TI - $L^\infty$ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term JO - Czechoslovak Mathematical Journal PY - 2011 SP - 389 EP - 400 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0083-1/ DO - 10.1007/s10587-011-0083-1 LA - en ID - 10_1007_s10587_011_0083_1 ER -
%0 Journal Article %A Hou, Pulun %A Chen, Caisheng %T $L^\infty$ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term %J Czechoslovak Mathematical Journal %D 2011 %P 389-400 %V 61 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0083-1/ %R 10.1007/s10587-011-0083-1 %G en %F 10_1007_s10587_011_0083_1
Hou, Pulun; Chen, Caisheng. $L^\infty$ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 389-400. doi: 10.1007/s10587-011-0083-1
Cité par Sources :