$n$-flat and $n$-FP-injective modules
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 359-369.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study the existence of the $n$-flat preenvelope and the $n$-FP-injective cover. We also characterize $n$-coherent rings in terms of the $n$-FP-injective and $n$-flat modules.
DOI : 10.1007/s10587-011-0080-4
Classification : 13C11, 13D07, 16D40, 16E10
Keywords: $n$-flat module; $n$-FP-injective module; $n$-coherent ring; cotorsion theory
@article{10_1007_s10587_011_0080_4,
     author = {Yang, Xiaoyan and Liu, Zhongkui},
     title = {$n$-flat and $n${-FP-injective} modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {359--369},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0080-4},
     mrnumber = {2905409},
     zbl = {1249.13011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0080-4/}
}
TY  - JOUR
AU  - Yang, Xiaoyan
AU  - Liu, Zhongkui
TI  - $n$-flat and $n$-FP-injective modules
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 359
EP  - 369
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0080-4/
DO  - 10.1007/s10587-011-0080-4
LA  - en
ID  - 10_1007_s10587_011_0080_4
ER  - 
%0 Journal Article
%A Yang, Xiaoyan
%A Liu, Zhongkui
%T $n$-flat and $n$-FP-injective modules
%J Czechoslovak Mathematical Journal
%D 2011
%P 359-369
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0080-4/
%R 10.1007/s10587-011-0080-4
%G en
%F 10_1007_s10587_011_0080_4
Yang, Xiaoyan; Liu, Zhongkui. $n$-flat and $n$-FP-injective modules. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 359-369. doi : 10.1007/s10587-011-0080-4. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0080-4/

Cité par Sources :