The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots ,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.
DOI : 10.1007/s10587-011-0079-x
Classification : 05C20, 11A07, 11A15, 20K01
Keywords: Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs
@article{10_1007_s10587_011_0079_x,
     author = {Somer, Lawrence and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0079-x},
     mrnumber = {2905408},
     zbl = {1249.11006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/}
}
TY  - JOUR
AU  - Somer, Lawrence
AU  - Křížek, Michal
TI  - The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 337
EP  - 358
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/
DO  - 10.1007/s10587-011-0079-x
LA  - en
ID  - 10_1007_s10587_011_0079_x
ER  - 
%0 Journal Article
%A Somer, Lawrence
%A Křížek, Michal
%T The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
%J Czechoslovak Mathematical Journal
%D 2011
%P 337-358
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/
%R 10.1007/s10587-011-0079-x
%G en
%F 10_1007_s10587_011_0079_x
Somer, Lawrence; Křížek, Michal. The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358. doi : 10.1007/s10587-011-0079-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/

Cité par Sources :