The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots ,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.
We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots ,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.
DOI :
10.1007/s10587-011-0079-x
Classification :
05C20, 11A07, 11A15, 20K01
Keywords: Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs
Keywords: Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs
@article{10_1007_s10587_011_0079_x,
author = {Somer, Lawrence and K\v{r}{\'\i}\v{z}ek, Michal},
title = {The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$},
journal = {Czechoslovak Mathematical Journal},
pages = {337--358},
year = {2011},
volume = {61},
number = {2},
doi = {10.1007/s10587-011-0079-x},
mrnumber = {2905408},
zbl = {1249.11006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/}
}
TY - JOUR AU - Somer, Lawrence AU - Křížek, Michal TI - The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$ JO - Czechoslovak Mathematical Journal PY - 2011 SP - 337 EP - 358 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/ DO - 10.1007/s10587-011-0079-x LA - en ID - 10_1007_s10587_011_0079_x ER -
%0 Journal Article %A Somer, Lawrence %A Křížek, Michal %T The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$ %J Czechoslovak Mathematical Journal %D 2011 %P 337-358 %V 61 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0079-x/ %R 10.1007/s10587-011-0079-x %G en %F 10_1007_s10587_011_0079_x
Somer, Lawrence; Křížek, Michal. The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 337-358. doi: 10.1007/s10587-011-0079-x
Cité par Sources :