Approximation by $q$-Bernstein type operators
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 329-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the $q$-Bernstein basis, we construct a new sequence $\{ L_{n} \}$ of positive linear operators in $C[0,1].$ We study its approximation properties and the rate of convergence in terms of modulus of continuity.
DOI : 10.1007/s10587-011-0078-y
Classification : 33D99, 41A25, 41A36
Keywords: $q$-integers; $q$-Bernstein operators; the Hahn-Banach theorem; modulus of continuity
@article{10_1007_s10587_011_0078_y,
     author = {Finta, Zolt\'an},
     title = {Approximation by $q${-Bernstein} type operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {329--336},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0078-y},
     mrnumber = {2905407},
     zbl = {1249.41033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/}
}
TY  - JOUR
AU  - Finta, Zoltán
TI  - Approximation by $q$-Bernstein type operators
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 329
EP  - 336
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/
DO  - 10.1007/s10587-011-0078-y
LA  - en
ID  - 10_1007_s10587_011_0078_y
ER  - 
%0 Journal Article
%A Finta, Zoltán
%T Approximation by $q$-Bernstein type operators
%J Czechoslovak Mathematical Journal
%D 2011
%P 329-336
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/
%R 10.1007/s10587-011-0078-y
%G en
%F 10_1007_s10587_011_0078_y
Finta, Zoltán. Approximation by $q$-Bernstein type operators. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 329-336. doi : 10.1007/s10587-011-0078-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/

Cité par Sources :