Existence of entire solutions of nonlinear difference equations
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 565-576
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we obtain that there are no transcendental entire solutions with finite order of some nonlinear difference equations of different forms.
In this paper we obtain that there are no transcendental entire solutions with finite order of some nonlinear difference equations of different forms.
DOI : 10.1007/s10587-011-0075-1
Classification : 30D35, 39B32
Keywords: entire functions; difference equations; finite order
@article{10_1007_s10587_011_0075_1,
     author = {Liu, Kai and Yang, Lianzhong and Liu, Xinling},
     title = {Existence of entire solutions of nonlinear difference equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {565--576},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0075-1},
     mrnumber = {2905424},
     zbl = {1249.30102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0075-1/}
}
TY  - JOUR
AU  - Liu, Kai
AU  - Yang, Lianzhong
AU  - Liu, Xinling
TI  - Existence of entire solutions of nonlinear difference equations
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 565
EP  - 576
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0075-1/
DO  - 10.1007/s10587-011-0075-1
LA  - en
ID  - 10_1007_s10587_011_0075_1
ER  - 
%0 Journal Article
%A Liu, Kai
%A Yang, Lianzhong
%A Liu, Xinling
%T Existence of entire solutions of nonlinear difference equations
%J Czechoslovak Mathematical Journal
%D 2011
%P 565-576
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0075-1/
%R 10.1007/s10587-011-0075-1
%G en
%F 10_1007_s10587_011_0075_1
Liu, Kai; Yang, Lianzhong; Liu, Xinling. Existence of entire solutions of nonlinear difference equations. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 565-576. doi: 10.1007/s10587-011-0075-1

[1] Bergweiler, W., Langley, J. K.: Zeros of difference of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142 (2007), 133-147. | DOI | MR

[2] Chiang, Y.-M., Feng, S.-J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan. J. 16 (2008), 105-129. | DOI | MR | Zbl

[3] Chen, Z. X., Shon, K. H.: Estimates for the zeros of differences of meromorphic functions. Sci. China, Ser. A 52 (2009), 2447-2458. | DOI | MR | Zbl

[4] Clunie, J.: On integral and meromorphic functions. J. Lond. Math. Soc. 37 (1962), 17-27. | DOI | MR | Zbl

[5] Gross, F.: On the equation $f^{n}+g^{n}=1$. Bull. Am. Math. Soc. 72 (1966), 86-88. | DOI | MR

[6] Halburd, R. G., Korhonen, R. J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477-487. | DOI | MR | Zbl

[7] Halburd, R. G., Korhonen, R. J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn., Math. 31 (2006), 463-478. | MR | Zbl

[8] Halburd, R. G., Korhonen, R. J., Tohge, K.: Holomorphic cures with shift-invariant hyperplane preimages.

[9] Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter Berlin (1992). | MR | Zbl

[10] Laine, I., Yang, C. C.: Clunie theorems for difference and $q$-difference polynomials. J. Lond. Math. Soc. 76 (2007), 556-566. | DOI | MR | Zbl

[11] Liu, K., Laine, I.: A note on value distribution of difference polynomials. Bull. Aust. Math. Soc. 81 (2010), 353-360. | DOI | MR | Zbl

[12] Liu, K.: Zeros of difference polynomials of meromorphic functions. Result. Math. 57 (2010), 365-376. | DOI | MR | Zbl

[13] Liu, K.: Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 359 (2009), 384-393. | DOI | MR | Zbl

[14] Mohon'ko, A. Z.: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funktsii Funktsional. Anal. i Prilozhen. 14 (1971), 83-87 Russian. | MR

[15] Whittaker, J. M.: Interpolatory Function Theory. Cambridge Tracts in Math. a. Math. Phys. 33. Cambridge University Press London (1935).

[16] Yang, C.-C., Laine, I.: On analogies between nonlinear difference and differential equations. Proc. Japan Acad., Ser. A. 86 (2010), 10-14. | MR | Zbl

[17] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications 557. Kluwer Academic Publishers/Science Press Dordrecht/Beijing (2003). | MR

Cité par Sources :