Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 551-563
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we discuss the hypercyclicity, supercyclicity and cyclicity of the adjoint of a weighted composition operator on a Hilbert space of analytic functions.
In this paper, we discuss the hypercyclicity, supercyclicity and cyclicity of the adjoint of a weighted composition operator on a Hilbert space of analytic functions.
DOI : 10.1007/s10587-011-0074-2
Classification : 47A16, 47B33, 47B38
Keywords: hypercyclicity; supercyclicity; cyclicity; weighted composition operators
@article{10_1007_s10587_011_0074_2,
     author = {Kamali, Zahra and Robati, Bahram Khani and Hedayatian, Karim},
     title = {Cyclicity of the adjoint of weighted composition operators on the {Hilbert} space of analytic  functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {551--563},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0074-2},
     mrnumber = {2905423},
     zbl = {1243.47022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/}
}
TY  - JOUR
AU  - Kamali, Zahra
AU  - Robati, Bahram Khani
AU  - Hedayatian, Karim
TI  - Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic  functions
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 551
EP  - 563
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/
DO  - 10.1007/s10587-011-0074-2
LA  - en
ID  - 10_1007_s10587_011_0074_2
ER  - 
%0 Journal Article
%A Kamali, Zahra
%A Robati, Bahram Khani
%A Hedayatian, Karim
%T Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic  functions
%J Czechoslovak Mathematical Journal
%D 2011
%P 551-563
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/
%R 10.1007/s10587-011-0074-2
%G en
%F 10_1007_s10587_011_0074_2
Kamali, Zahra; Robati, Bahram Khani; Hedayatian, Karim. Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic  functions. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 551-563. doi: 10.1007/s10587-011-0074-2

[1] Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press Cambridge (2009). | MR

[2] Bourdon, P. S., Shapiro, J. H.: Cyclic Phenomena for Composition Operators. Mem. Am. Math. Soc. 596 (1997). | MR | Zbl

[3] Bourdon, P. S., Shapiro, J. H.: Hypercyclic operators that commute with the Bergman backward shift. Trans. Am. Math. Soc. 352 (2000), 5293-5316. | DOI | MR | Zbl

[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press Boca Raton (1995). | MR

[5] Feldman, N. S., Miller, V. G., Miller, T. L.: Hypercyclic and supercyclic cohyponormal operators. Acta Sci. Math. 68 (2002), 303-328. | MR | Zbl

[6] Forelli, F.: The isometries of $H^{p}$. Can. J. Math. 16 (1964), 721-728. | DOI | MR

[7] Gethner, R. M., Shapiro, J. H.: Universal vectors for operators on spaces of holomorphic functions. Proc. Am. Math. Soc. 100 (1987), 281-288. | DOI | MR | Zbl

[8] Godefroy, G., Shapiro, J. H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98 (1991), 229-269. | DOI | MR | Zbl

[9] Kitai, C.: Invariant closed sets for linear operators. Thesis Univ. of Toronto Toronto (1982). | MR

[10] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. | DOI | MR | Zbl

[11] Salas, H. N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347 (1995), 993-1004. | DOI | MR | Zbl

[12] Salas, H. N.: Supercyclicity and weighted shifts. Stud. Math. 135 (1999), 55-74. | DOI | MR | Zbl

[13] Shapiro, J. H.: Composition Operators and Classical Function Theory. Tracts in Mathematics. Springer New York (1993). | MR

[14] Yousefi, B., Haghkhah, S.: Hypercyclicity of special operators on Hilbert function spaces. Czech. Math. J. 57 (2007), 1035-1041. | DOI | MR | Zbl

[15] Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135 (2007), 3263-3271. | DOI | MR | Zbl

Cité par Sources :