Keywords: hypercyclicity; supercyclicity; cyclicity; weighted composition operators
@article{10_1007_s10587_011_0074_2,
author = {Kamali, Zahra and Robati, Bahram Khani and Hedayatian, Karim},
title = {Cyclicity of the adjoint of weighted composition operators on the {Hilbert} space of analytic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {551--563},
year = {2011},
volume = {61},
number = {2},
doi = {10.1007/s10587-011-0074-2},
mrnumber = {2905423},
zbl = {1243.47022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/}
}
TY - JOUR AU - Kamali, Zahra AU - Robati, Bahram Khani AU - Hedayatian, Karim TI - Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions JO - Czechoslovak Mathematical Journal PY - 2011 SP - 551 EP - 563 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/ DO - 10.1007/s10587-011-0074-2 LA - en ID - 10_1007_s10587_011_0074_2 ER -
%0 Journal Article %A Kamali, Zahra %A Robati, Bahram Khani %A Hedayatian, Karim %T Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions %J Czechoslovak Mathematical Journal %D 2011 %P 551-563 %V 61 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0074-2/ %R 10.1007/s10587-011-0074-2 %G en %F 10_1007_s10587_011_0074_2
Kamali, Zahra; Robati, Bahram Khani; Hedayatian, Karim. Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 551-563. doi: 10.1007/s10587-011-0074-2
[1] Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press Cambridge (2009). | MR
[2] Bourdon, P. S., Shapiro, J. H.: Cyclic Phenomena for Composition Operators. Mem. Am. Math. Soc. 596 (1997). | MR | Zbl
[3] Bourdon, P. S., Shapiro, J. H.: Hypercyclic operators that commute with the Bergman backward shift. Trans. Am. Math. Soc. 352 (2000), 5293-5316. | DOI | MR | Zbl
[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press Boca Raton (1995). | MR
[5] Feldman, N. S., Miller, V. G., Miller, T. L.: Hypercyclic and supercyclic cohyponormal operators. Acta Sci. Math. 68 (2002), 303-328. | MR | Zbl
[6] Forelli, F.: The isometries of $H^{p}$. Can. J. Math. 16 (1964), 721-728. | DOI | MR
[7] Gethner, R. M., Shapiro, J. H.: Universal vectors for operators on spaces of holomorphic functions. Proc. Am. Math. Soc. 100 (1987), 281-288. | DOI | MR | Zbl
[8] Godefroy, G., Shapiro, J. H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98 (1991), 229-269. | DOI | MR | Zbl
[9] Kitai, C.: Invariant closed sets for linear operators. Thesis Univ. of Toronto Toronto (1982). | MR
[10] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. | DOI | MR | Zbl
[11] Salas, H. N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347 (1995), 993-1004. | DOI | MR | Zbl
[12] Salas, H. N.: Supercyclicity and weighted shifts. Stud. Math. 135 (1999), 55-74. | DOI | MR | Zbl
[13] Shapiro, J. H.: Composition Operators and Classical Function Theory. Tracts in Mathematics. Springer New York (1993). | MR
[14] Yousefi, B., Haghkhah, S.: Hypercyclicity of special operators on Hilbert function spaces. Czech. Math. J. 57 (2007), 1035-1041. | DOI | MR | Zbl
[15] Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135 (2007), 3263-3271. | DOI | MR | Zbl
Cité par Sources :