Ideal version of Ramsey's theorem
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 289-308
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].
We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].
DOI : 10.1007/s10587-011-0073-3
Classification : 05A17, 05D10, 11B05, 40A35, 54A20
Keywords: ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem
@article{10_1007_s10587_011_0073_3,
     author = {Filip\'ow, Rafa{\l} and Mro\.zek, Nikodem and Rec{\l}aw, Ireneusz and Szuca, Piotr},
     title = {Ideal version of {Ramsey's} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--308},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0073-3},
     mrnumber = {2905404},
     zbl = {1249.05378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0073-3/}
}
TY  - JOUR
AU  - Filipów, Rafał
AU  - Mrożek, Nikodem
AU  - Recław, Ireneusz
AU  - Szuca, Piotr
TI  - Ideal version of Ramsey's theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 289
EP  - 308
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0073-3/
DO  - 10.1007/s10587-011-0073-3
LA  - en
ID  - 10_1007_s10587_011_0073_3
ER  - 
%0 Journal Article
%A Filipów, Rafał
%A Mrożek, Nikodem
%A Recław, Ireneusz
%A Szuca, Piotr
%T Ideal version of Ramsey's theorem
%J Czechoslovak Mathematical Journal
%D 2011
%P 289-308
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0073-3/
%R 10.1007/s10587-011-0073-3
%G en
%F 10_1007_s10587_011_0073_3
Filipów, Rafał; Mrożek, Nikodem; Recław, Ireneusz; Szuca, Piotr. Ideal version of Ramsey's theorem. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 289-308. doi: 10.1007/s10587-011-0073-3

[1] Alcántara, D. Meza: Ideals and filters on countable set. PhD thesis Universidad Nacional Autónoma de México (2009).

[2] Baumgartner, J. E., Taylor, A. D., Wagon, S.: Structural Properties of Ideals. Diss. Math. 197 (1982). | MR | Zbl

[3] Booth, D.: Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 1-24. | DOI | MR | Zbl

[4] Burkill, H., Mirsky, L.: Monotonicity. J. Math. Anal. Appl. 41 (1973), 391-410. | DOI | MR | Zbl

[5] Farah, I.: Semiselective coideals. Mathematika 45 (1998), 79-103. | DOI | MR | Zbl

[6] Farah, I.: Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers. Mem. Am. Math. Soc 702 (2000). | MR | Zbl

[7] Filipów, R., Mrożek, N., Recław, I., Szuca, P.: Ideal convergence of bounded sequences. J. Symb. Log. 72 (2007), 501-512. | DOI | MR

[8] Filipów, R., Szuca, P.: Density versions of Schur's theorem for ideals generated by submeasures. J. Comb. Theory, Ser. A 117 (2010), 943-956. | DOI | MR | Zbl

[9] Frankl, P., Graham, R. L., Rödl, V.: Iterated combinatorial density theorems. J. Comb. Theory, Ser. A 54 (1990), 95-111. | DOI | MR

[10] Kojman, M.: Van der Waerden spaces. Proc. Am. Math. Soc. 130 (2002), 631-635. | DOI | MR | Zbl

[11] Mazur, K.: $F_\sigma$-ideals and $\omega_1\omega_1^*$-gaps in the Boolean algebras {$P(\omega)/I$}. Fundam. Math. 138 (1991), 103-111. | DOI | MR

[12] Samet, N., Tsaban, B.: Superfilters, Ramsey theory, and van der Waerden's theorem. Topology Appl. 156 (2009), 2659-2669. | DOI | MR | Zbl

[13] Shelah, S.: Proper Forcing. Lecture Notes in Mathematics, Vol. 940. Springer Berlin (1982). | DOI | MR

[14] Solecki, S.: Analytic ideals and their applications. Ann. Pure Appl. Logic 99 (1999), 51-72. | DOI | MR | Zbl

[15] Todorcevic, S.: Topics in Topology. Lecture Notes in Mathematics, Vol. 1652 Springer Berlin (1997). | DOI | MR | Zbl

Cité par Sources :