Moments of vector measures and Pettis integrable functions
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 541-549
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.
Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.
DOI : 10.1007/s10587-011-0072-4
Classification : 28B05, 28B99, 44A60, 46G12
Keywords: locally convex vector space; vector valued measure; Pettis integrable function; moments of such measures and functions
@article{10_1007_s10587_011_0072_4,
     author = {Ducho\v{n}, Miloslav},
     title = {Moments of vector measures and {Pettis} integrable functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {541--549},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0072-4},
     mrnumber = {2905422},
     zbl = {1249.44009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0072-4/}
}
TY  - JOUR
AU  - Duchoň, Miloslav
TI  - Moments of vector measures and Pettis integrable functions
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 541
EP  - 549
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0072-4/
DO  - 10.1007/s10587-011-0072-4
LA  - en
ID  - 10_1007_s10587_011_0072_4
ER  - 
%0 Journal Article
%A Duchoň, Miloslav
%T Moments of vector measures and Pettis integrable functions
%J Czechoslovak Mathematical Journal
%D 2011
%P 541-549
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0072-4/
%R 10.1007/s10587-011-0072-4
%G en
%F 10_1007_s10587_011_0072_4
Duchoň, Miloslav. Moments of vector measures and Pettis integrable functions. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 541-549. doi: 10.1007/s10587-011-0072-4

[1] Berg, Ch., Christensen, J. P. P., Ressel, P.: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, Germany (1954). | MR

[2] Bartle, R. G., Dunford, N., Schwartz, J. C.: Weak compactness and vector measures. Canad. J. Math. 7 (1955), 289-305. | DOI | MR | Zbl

[3] Debieve, C.: Integration par rapport a une mesure vectorielle. Ann. de la Societé Scientif. de Bruxelles. 11 (1973), 165-185. | MR | Zbl

[4] Duchoň, M., Debieve, C.: Moments of vector-valued functions and measures. Tatra Mt. Math. Publ. 42 (2009), 199-210. | MR

[5] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, Interscience, New York, USA (1966). | Zbl

[6] Hausdorff, F.: Summationsmethoden und Momentenfolgen II. Math. Z. 9 (1921), 280-299. | DOI | MR

[7] Hausdorff, F.: Momentprobleme fuer ein endliches Interval. Math. Z. 16 (1923), 220-248. | DOI | MR

[8] Lewis, D. R.: Integration with respect to vector measures. Pac. J. Math. 33 (1970), 157-165. | DOI | MR | Zbl

[9] Lorentz, G. G.: Bernstein Polynomials. Toronto University Press, Toronto, Canada (1953). | MR | Zbl

[10] Tweddle, I.: Weak compactness in locally convex spaces. Glasgow Math. J. 9 (1968), 123-127. | DOI | MR | Zbl

[11] Widder, D. V.: The Laplace Transform. Princeton University Press, Princeton, N.J. (1941). | MR | Zbl

Cité par Sources :