The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 531-539
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
DOI : 10.1007/s10587-011-0071-5
Classification : 15A33, 16S34, 16U60, 20C05
Keywords: group ring; group algebra; dihedral group; cyclic group
@article{10_1007_s10587_011_0071_5,
     author = {Gildea, Joe},
     title = {The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {531--539},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0071-5},
     mrnumber = {2905421},
     zbl = {1237.16035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/}
}
TY  - JOUR
AU  - Gildea, Joe
TI  - The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 531
EP  - 539
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/
DO  - 10.1007/s10587-011-0071-5
LA  - en
ID  - 10_1007_s10587_011_0071_5
ER  - 
%0 Journal Article
%A Gildea, Joe
%T The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
%J Czechoslovak Mathematical Journal
%D 2011
%P 531-539
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/
%R 10.1007/s10587-011-0071-5
%G en
%F 10_1007_s10587_011_0071_5
Gildea, Joe. The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 531-539. doi: 10.1007/s10587-011-0071-5

[1] Bovdi, A. A., Erdei, L.: Unitary units in the modular group algebra of groups of order 16. Technical Reports Debrecen 96/4 (1996), 57-72. | MR

[2] Bovdi, A. A., Szakács, A.: Unitary subgroup of the group of units of a modular group algebra of a finite abelian $p$-group. Math. Zametki 45 (1989), 23-29. | MR

[3] Bovdi, V. A., Kovács, L. G.: Unitary units in modular group algebras. Manuscr. Math. 84 (1994), 57-72. | DOI | MR

[4] Bovdi, V., Rosa, A. L.: On the order of the unitary subgroup of a modular group algebra. Commun. Algebra 28 (2000), 1897-1905. | DOI | MR | Zbl

[5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra ${\mathbb F}_{2^k}D_{8}$. Can. Math. Bull 54 (2011), 237-243. doi:10.4153/CMB-2010-098-5. | DOI | MR

[6] Creedon, L., Gildea, J.: Unitary units of the group algebra ${\mathbb F}_{2^k}Q_{8}$. Internat. J. Algebra Comput. 19 (2009), 283-286. | DOI | MR

[7] Davis, P. J.: Circulant Matrices. Chelsea Publishing New York (1979). | MR | Zbl

[8] Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31 (2006), 319-335. | MR | Zbl

[9] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Kluwer Academic Publishers Dordrecht (2002). | MR

[10] Sandling, R.: Units in the modular group algebra of a finite abelian $p$-group. J. Pure Appl. Algebra 33 (1984), 337-346. | DOI | MR | Zbl

[11] Sandling, R.: Presentations for units groups of modular group algebras of groups of order 16. Math. Comp. 59 (1992), 689-701. | MR

[12] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. Debrecen 71 (2007), 21-26. | MR | Zbl

Cité par Sources :