The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 531-539.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
DOI : 10.1007/s10587-011-0071-5
Classification : 15A33, 16S34, 16U60, 20C05
Keywords: group ring; group algebra; dihedral group; cyclic group
@article{10_1007_s10587_011_0071_5,
     author = {Gildea, Joe},
     title = {The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {531--539},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.1007/s10587-011-0071-5},
     mrnumber = {2905421},
     zbl = {1237.16035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/}
}
TY  - JOUR
AU  - Gildea, Joe
TI  - The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 531
EP  - 539
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/
DO  - 10.1007/s10587-011-0071-5
LA  - en
ID  - 10_1007_s10587_011_0071_5
ER  - 
%0 Journal Article
%A Gildea, Joe
%T The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
%J Czechoslovak Mathematical Journal
%D 2011
%P 531-539
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/
%R 10.1007/s10587-011-0071-5
%G en
%F 10_1007_s10587_011_0071_5
Gildea, Joe. The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 531-539. doi : 10.1007/s10587-011-0071-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0071-5/

Cité par Sources :