On regular endomorphism rings of topological Abelian groups
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 521-530
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups $A$ for which ${\rm End}_c(A)$ is regular is given.
DOI :
10.1007/s10587-011-0070-6
Classification :
16E50, 16S50, 16W80, 20K30, 20K45, 22B05
Keywords: $m$-regular ring; discrete module; quasi-injective module; linearly compact group; LCA group; local product
Keywords: $m$-regular ring; discrete module; quasi-injective module; linearly compact group; LCA group; local product
@article{10_1007_s10587_011_0070_6,
author = {Abrudan, Horea Florian},
title = {On regular endomorphism rings of topological {Abelian} groups},
journal = {Czechoslovak Mathematical Journal},
pages = {521--530},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2011},
doi = {10.1007/s10587-011-0070-6},
mrnumber = {2905420},
zbl = {1240.20055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0070-6/}
}
TY - JOUR AU - Abrudan, Horea Florian TI - On regular endomorphism rings of topological Abelian groups JO - Czechoslovak Mathematical Journal PY - 2011 SP - 521 EP - 530 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0070-6/ DO - 10.1007/s10587-011-0070-6 LA - en ID - 10_1007_s10587_011_0070_6 ER -
%0 Journal Article %A Abrudan, Horea Florian %T On regular endomorphism rings of topological Abelian groups %J Czechoslovak Mathematical Journal %D 2011 %P 521-530 %V 61 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0070-6/ %R 10.1007/s10587-011-0070-6 %G en %F 10_1007_s10587_011_0070_6
Abrudan, Horea Florian. On regular endomorphism rings of topological Abelian groups. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 521-530. doi: 10.1007/s10587-011-0070-6
Cité par Sources :