Hall exponents of matrices, tournaments and their line digraphs
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 461-481
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a square $(0,1)$-matrix. Then $A$ is a Hall matrix provided it has a nonzero permanent. The Hall exponent of $A$ is the smallest positive integer $k$, if such exists, such that $A^k$ is a Hall matrix. The Hall exponent has received considerable attention, and we both review and expand on some of its properties. Viewing $A$ as the adjacency matrix of a digraph, we prove several properties of the Hall exponents of line digraphs with some emphasis on line digraphs of tournament (matrices).
Let $A$ be a square $(0,1)$-matrix. Then $A$ is a Hall matrix provided it has a nonzero permanent. The Hall exponent of $A$ is the smallest positive integer $k$, if such exists, such that $A^k$ is a Hall matrix. The Hall exponent has received considerable attention, and we both review and expand on some of its properties. Viewing $A$ as the adjacency matrix of a digraph, we prove several properties of the Hall exponents of line digraphs with some emphasis on line digraphs of tournament (matrices).
DOI : 10.1007/s10587-011-0066-2
Classification : 05C20, 15A15, 15B34
Keywords: Hall matrix; Hall exponent; irreducible; primitive; tournament (matrix); line digraph
@article{10_1007_s10587_011_0066_2,
     author = {Brualdi, Richard A. and Kiernan, Kathleen P.},
     title = {Hall exponents of matrices, tournaments  and their line digraphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {461--481},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0066-2},
     mrnumber = {2905416},
     zbl = {1249.15008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0066-2/}
}
TY  - JOUR
AU  - Brualdi, Richard A.
AU  - Kiernan, Kathleen P.
TI  - Hall exponents of matrices, tournaments  and their line digraphs
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 461
EP  - 481
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0066-2/
DO  - 10.1007/s10587-011-0066-2
LA  - en
ID  - 10_1007_s10587_011_0066_2
ER  - 
%0 Journal Article
%A Brualdi, Richard A.
%A Kiernan, Kathleen P.
%T Hall exponents of matrices, tournaments  and their line digraphs
%J Czechoslovak Mathematical Journal
%D 2011
%P 461-481
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0066-2/
%R 10.1007/s10587-011-0066-2
%G en
%F 10_1007_s10587_011_0066_2
Brualdi, Richard A.; Kiernan, Kathleen P. Hall exponents of matrices, tournaments  and their line digraphs. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 461-481. doi: 10.1007/s10587-011-0066-2

[1] Aigner, M.: On the line graph of a directed graph. Math. Z. 102 (1967), 56-61. | DOI | MR

[2] Brualdi, R. A., Kiernan, K. P.: Landau's and Rado's theorems and partial tournaments. Electron. J. Comb. 16 (2009). | MR | Zbl

[3] Brualdi, R. A., Li, Q.: The interchange graph of tournaments with the same score vector. In: Progress in Graph Theory (Waterloo, Ont. 1982) Academic Press Toronto, ON (1984), 129-151. | MR | Zbl

[4] Brualdi, R. A., Liu, B.: Hall exponents of Boolean matrices. Czechoslovak Math. J. 40(115) (1990), 659-670. | MR | Zbl

[5] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. Cambridge Univ. Press Cambridge (1991). | MR | Zbl

[6] Hemminger, R. L., Beineke, L. W.: Line graphs and line digraphs. Selected Topics in Graph Theory Academic Press, New York, 271-305 (1978). | Zbl

[7] Huang, Y., Liu, B.: On a conjecture for fully indecomposable exponent and Hall exponent. Linear Multilinear Algebra 58 (2010), 699-710. | DOI | MR | Zbl

[8] Liu, B., Zhou, Bo: Estimates on strict Hall exponents. Australas. J. Comb. 19 (1999), 129-135. | MR

[9] Liu, B., Zhou, Bo: On the Hall exponents of Boolean matrices. Linear Multilinear Algebra 46 (1999), 165-175. | DOI | MR

[10] Moon, J. W., Pullman, N. J.: On the powers of tournament matrices. J. Comb. Theory 3 (1967), 1-9. | DOI | MR | Zbl

[11] Schwarz, Š.: The semigroup of fully indecomposable relations and Hall relations. Czechoslovak Math. J. 23(98) (1973), 151-163. | MR | Zbl

[12] Tan, S., Liu, B., Zhang, D.: Extreme tournaments with given primitive exponents. Australas. J. Comb. 28 (2003), 81-91. | MR

Cité par Sources :