A Pettis-type integral and applications to transition semigroups
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 437-459
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.
Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.
DOI : 10.1007/s10587-011-0065-3
Classification : 46G10, 47D06, 60J35
Keywords: Pettis-type integral; dual pairs; Laplace transform; transition semigroup
@article{10_1007_s10587_011_0065_3,
     author = {Kunze, Markus},
     title = {A {Pettis-type} integral and applications to transition semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {437--459},
     year = {2011},
     volume = {61},
     number = {2},
     doi = {10.1007/s10587-011-0065-3},
     mrnumber = {2905415},
     zbl = {1249.46044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0065-3/}
}
TY  - JOUR
AU  - Kunze, Markus
TI  - A Pettis-type integral and applications to transition semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 437
EP  - 459
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0065-3/
DO  - 10.1007/s10587-011-0065-3
LA  - en
ID  - 10_1007_s10587_011_0065_3
ER  - 
%0 Journal Article
%A Kunze, Markus
%T A Pettis-type integral and applications to transition semigroups
%J Czechoslovak Mathematical Journal
%D 2011
%P 437-459
%V 61
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0065-3/
%R 10.1007/s10587-011-0065-3
%G en
%F 10_1007_s10587_011_0065_3
Kunze, Markus. A Pettis-type integral and applications to transition semigroups. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 437-459. doi: 10.1007/s10587-011-0065-3

[1] Arendt, W.: Approximation of degenerate semigroups. Taiwanese J. Math. 5 (2001), 327-295. | DOI | MR | Zbl

[2] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transform and Cauchy Problems. Monographs in Mathematics. Vol. 96. Birkhäuser Basel (2001). | MR

[3] Arendt, W., Nikolski, N.: Vector-valued holomorphic functions revisited. Math. Z. 252 (2006), 687-689. | DOI | MR

[4] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. Walter de Gruyter Berlin (1968). | MR | Zbl

[5] Bonet, J., Cascales, B.: Non complete Mackey topologies on Banach spaces. Bull. Aust. Math. Soc. 81 (2010), 409-413. | DOI | MR

[6] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994), 349-367. | DOI | MR

[7] Davis, W. J., Lindenstrauss, J.: On total nonnorming subspaces. Proc. Am. Math. Soc. 31 (1972), 109-111. | DOI | MR | Zbl

[8] Diestel, J., Uhl, J. J.: Vector Measures. Mathematical Surveys and Applications. Vol. 15. Amer. Math. Soc. Providence (1977). | MR

[9] Farkas, B.: Perturbations of bi-continuous semigroups on {$C_b(H)$} with applications to the Ornstein-Uhlenbeck semigroup. Semigroup Forum 68 (2004), 329-353. | DOI | MR

[10] Feller, W.: Semigroups of transformations in general weak topologies. Ann. Math. 57 (1953), 287-308. | DOI | MR | Zbl

[11] Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications. Vol. 169. Birkhäuser Basel (2006). | MR

[12] Jacob, N.: Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups. Vol. I. Imperial College Press London (2001). | MR

[13] Ali, S. Jaker, Chakraborty, N. D.: Pettis integration in locally convex space. Anal. Math. 23 (1997), 241-257. | DOI | MR

[14] Jarchow, H.: Locally Convex Spaces. Teubner Stuttgart (1981). | MR | Zbl

[15] Jefferies, B.: Weakly integrable semigroups on locally convex spaces. J. Funct. Anal. 66 (1986), 347-364. | DOI | MR | Zbl

[16] Jefferies, B.: The generation of weakly integrable semigroups. J. Funct. Anal. 73 (1987), 195-215. | DOI | MR | Zbl

[17] Koethe, G.: Topological Vector Spaces. Grundlagen der Mathematischen Wissenschaften in Einzeldarstellungen. Vol. 107. Springer Berlin (1969).

[18] Kühnemund, F.: A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum 67 (2003), 205-225. | DOI | MR

[19] Kühnemund, F., Neerven, J. M. A. M. van: A Lie-Trotter product formula for Ornstein-Uhlenbeck semigroups in infinite dimensions. J. Evol. Equ. 4 (2004), 53-73. | DOI | MR

[20] Kunze, M.: Continuity and equicontinuity of semigroups on norming dual pairs. Semigroup Forum 79 (2009), 540-560. | DOI | MR | Zbl

[21] Lant, T., Thieme, H. R.: Markov transition functions and semigroups of measures. Semigroup Forum 74 (2007), 337-369. | DOI | MR | Zbl

[22] Musiał, K.: The weak Radon-Nikodym property in Banach spaces. Stud. Math. 64 (1979), 151-174. | DOI | MR

[23] Pettis, B. J.: On integration in vector spaces. Trans. Am. Math. Soc. 44 (1938), 277-304. | DOI | MR | Zbl

[24] Phillips, R. S.: On one-parameter semigroups of linear transformations. Proc. Am. Math. Soc. 2 (1951), 234-237. | DOI | MR

[25] Priola, E.: On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Stud. Math. 136 (1999), 271-295. | DOI | MR | Zbl

Cité par Sources :