On Lehmer's problem and Dedekind sums
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 909-916
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \leq p-1$ in which $a$ and $\overline {b}$ are of opposite parity, where $\overline {b}$ is defined by the congruence equation $b\overline {b}\equiv 1\pmod p$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac {1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it.
Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \leq p-1$ in which $a$ and $\overline {b}$ are of opposite parity, where $\overline {b}$ is defined by the congruence equation $b\overline {b}\equiv 1\pmod p$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac {1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it.
DOI : 10.1007/s10587-011-0058-2
Classification : 11F20, 11L40, 11M20
Keywords: Lehmer's problem; error term; Dedekind sums; hybrid mean value; asymptotic formula
@article{10_1007_s10587_011_0058_2,
     author = {Pan, Xiaowei and Zhang, Wenpeng},
     title = {On {Lehmer's} problem and {Dedekind} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {909--916},
     year = {2011},
     volume = {61},
     number = {4},
     doi = {10.1007/s10587-011-0058-2},
     mrnumber = {2886246},
     zbl = {1249.11090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0058-2/}
}
TY  - JOUR
AU  - Pan, Xiaowei
AU  - Zhang, Wenpeng
TI  - On Lehmer's problem and Dedekind sums
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 909
EP  - 916
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0058-2/
DO  - 10.1007/s10587-011-0058-2
LA  - en
ID  - 10_1007_s10587_011_0058_2
ER  - 
%0 Journal Article
%A Pan, Xiaowei
%A Zhang, Wenpeng
%T On Lehmer's problem and Dedekind sums
%J Czechoslovak Mathematical Journal
%D 2011
%P 909-916
%V 61
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0058-2/
%R 10.1007/s10587-011-0058-2
%G en
%F 10_1007_s10587_011_0058_2
Pan, Xiaowei; Zhang, Wenpeng. On Lehmer's problem and Dedekind sums. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 909-916. doi: 10.1007/s10587-011-0058-2

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Upgraduate Texts in Mathematics, Springer-Verlag, New York (1976). | MR | Zbl

[2] Carlitz, L.: The reciprocity theorem for Dedekind sums. Pac. J. Math. 3 (1953), 523-527. | DOI | MR | Zbl

[3] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums. J. Number Theory 56 (1996), 214-226. | DOI | MR | Zbl

[4] Guy, R. K.: Unsolved Problems in Number Theory (Second Edition). Unsolved Problems in Intuitive Mathematics 1, Springer-Verlag, New York (1994). | MR

[5] Jia, C. H.: On the mean value of Dedekind sums. J. Number Theory 87 (2001), 173-188. | DOI | MR | Zbl

[6] Xu, Z. F., Zhang, W. P.: Dirichlet Characters and Their Applications. Chinese Science Press, Beijing (2008).

[7] Xu, Z. F., Zhang, W. P.: On a problem of D. H. Lehmer over short intervals. J. Math. Anal. Appl. 320 (2006), 756-770. | DOI | MR | Zbl

[8] Zhang, W. P.: A note on the mean square value of the Dedekind sums. Acta Math. Hung. 86 (2000), 275-289. | DOI | MR | Zbl

[9] Zhang, W. P.: A problem of D. H. Lehmer and its mean square value formula. Jap. J. Math. 29 (2003), 109-116. | MR | Zbl

[10] Zhang, W. P.: On a problem of D. H. Lehmer and its generalization. Compos. Math. 86 (1993), 307-316. | MR | Zbl

[11] Zhang, W. P.: On the mean values of Dedekind sums. J. Théor. Nombres Bordx. 8 (1996), 429-442. | DOI | MR | Zbl

Cité par Sources :