Some characterizations of weakly compact operator on Banach lattices
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 901-908
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences.
We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences.
DOI : 10.1007/s10587-011-0057-3
Classification : 46A40, 46B40, 46B42
Keywords: weakly compact operator; order continuous norm; KB-space
@article{10_1007_s10587_011_0057_3,
     author = {Aqzzouz, Belmesnaoui and Bouras, Khalid},
     title = {Some characterizations of weakly compact operator on {Banach} lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {901--908},
     year = {2011},
     volume = {61},
     number = {4},
     doi = {10.1007/s10587-011-0057-3},
     mrnumber = {2886245},
     zbl = {1249.46013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/}
}
TY  - JOUR
AU  - Aqzzouz, Belmesnaoui
AU  - Bouras, Khalid
TI  - Some characterizations of weakly compact operator on Banach lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 901
EP  - 908
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/
DO  - 10.1007/s10587-011-0057-3
LA  - en
ID  - 10_1007_s10587_011_0057_3
ER  - 
%0 Journal Article
%A Aqzzouz, Belmesnaoui
%A Bouras, Khalid
%T Some characterizations of weakly compact operator on Banach lattices
%J Czechoslovak Mathematical Journal
%D 2011
%P 901-908
%V 61
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/
%R 10.1007/s10587-011-0057-3
%G en
%F 10_1007_s10587_011_0057_3
Aqzzouz, Belmesnaoui; Bouras, Khalid. Some characterizations of weakly compact operator on Banach lattices. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 901-908. doi: 10.1007/s10587-011-0057-3

[1] Aliprantis, Ch. D., Burkinshaw, O.: Positive Operators. Reprint of the 1985 original. Springer, Berlin (2006). | MR | Zbl

[2] Aqzzouz, B., Nouira, R., Zraoula, L.: About positive Dunford-Pettis operators on Banach lattices. J. Math. Anal. Appl. 324 (2006), 49-59. | DOI | MR | Zbl

[3] Aqzzouz, B., Elbour, A.: On the weak compactness of b-weakly compact operators. Positivity 14 (2010), 75-81. | DOI | MR | Zbl

[4] Aqzzouz, B., Elbour, A., Hmichane, J.: Some properties of the class of positive Dunford-Pettis operators. J. Math. Anal. Appl. 354 (2009), 295-300. | DOI | MR | Zbl

[5] Schaefer, H. H.: Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wissenschaften 215, Springer-Verlag, Berlin and New York (1974). | MR | Zbl

[6] Meyer-Nieberg, P.: Banach lattices. Universitext. Springer-Verlag, Berlin (1991). | MR | Zbl

[7] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Camb. Philos. Soc. 120 (1996), 175-179. | DOI | MR | Zbl

[8] Wnuk, W.: Some characterizations of Banach lattices with the Schur property. Congress on Functional Analysis (Madrid, 1988). Rev. Mat. Univ. Complutense Madr. {\it 2}, No. Suppl., (1989), 217-224. | MR | Zbl

[9] Zaanen, A. C.: Riesz Spaces II. North-Holland Mathematical Library 30, Amsterdam-New York-Oxford, North-Holland Publishing Company (1983). | MR | Zbl

Cité par Sources :