Keywords: weakly compact operator; order continuous norm; KB-space
@article{10_1007_s10587_011_0057_3,
author = {Aqzzouz, Belmesnaoui and Bouras, Khalid},
title = {Some characterizations of weakly compact operator on {Banach} lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {901--908},
year = {2011},
volume = {61},
number = {4},
doi = {10.1007/s10587-011-0057-3},
mrnumber = {2886245},
zbl = {1249.46013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/}
}
TY - JOUR AU - Aqzzouz, Belmesnaoui AU - Bouras, Khalid TI - Some characterizations of weakly compact operator on Banach lattices JO - Czechoslovak Mathematical Journal PY - 2011 SP - 901 EP - 908 VL - 61 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/ DO - 10.1007/s10587-011-0057-3 LA - en ID - 10_1007_s10587_011_0057_3 ER -
%0 Journal Article %A Aqzzouz, Belmesnaoui %A Bouras, Khalid %T Some characterizations of weakly compact operator on Banach lattices %J Czechoslovak Mathematical Journal %D 2011 %P 901-908 %V 61 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0057-3/ %R 10.1007/s10587-011-0057-3 %G en %F 10_1007_s10587_011_0057_3
Aqzzouz, Belmesnaoui; Bouras, Khalid. Some characterizations of weakly compact operator on Banach lattices. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 901-908. doi: 10.1007/s10587-011-0057-3
[1] Aliprantis, Ch. D., Burkinshaw, O.: Positive Operators. Reprint of the 1985 original. Springer, Berlin (2006). | MR | Zbl
[2] Aqzzouz, B., Nouira, R., Zraoula, L.: About positive Dunford-Pettis operators on Banach lattices. J. Math. Anal. Appl. 324 (2006), 49-59. | DOI | MR | Zbl
[3] Aqzzouz, B., Elbour, A.: On the weak compactness of b-weakly compact operators. Positivity 14 (2010), 75-81. | DOI | MR | Zbl
[4] Aqzzouz, B., Elbour, A., Hmichane, J.: Some properties of the class of positive Dunford-Pettis operators. J. Math. Anal. Appl. 354 (2009), 295-300. | DOI | MR | Zbl
[5] Schaefer, H. H.: Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wissenschaften 215, Springer-Verlag, Berlin and New York (1974). | MR | Zbl
[6] Meyer-Nieberg, P.: Banach lattices. Universitext. Springer-Verlag, Berlin (1991). | MR | Zbl
[7] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Camb. Philos. Soc. 120 (1996), 175-179. | DOI | MR | Zbl
[8] Wnuk, W.: Some characterizations of Banach lattices with the Schur property. Congress on Functional Analysis (Madrid, 1988). Rev. Mat. Univ. Complutense Madr. {\it 2}, No. Suppl., (1989), 217-224. | MR | Zbl
[9] Zaanen, A. C.: Riesz Spaces II. North-Holland Mathematical Library 30, Amsterdam-New York-Oxford, North-Holland Publishing Company (1983). | MR | Zbl
Cité par Sources :