Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1141-1167
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that for every $\varepsilon >0$ there is a set $A\subset \mathbb{R}^3$ such that ${\Cal H}^1\llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are non-conical and non-unique and ${\Cal H}^1\llcorner A$ has the $1$-dimensional density between $1$ and $2+\varepsilon $ everywhere in the support.
DOI :
10.1007/s10587-011-0054-6
Classification :
28A75, 49Q15, 53A10
Keywords: monotone measure; monotonicity formula; tangent measure
Keywords: monotone measure; monotonicity formula; tangent measure
@article{10_1007_s10587_011_0054_6,
author = {\v{C}ern\'y, Robert and Kol\'a\v{r}, Jan and Rokyta, Mirko},
title = {Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$},
journal = {Czechoslovak Mathematical Journal},
pages = {1141--1167},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {2011},
doi = {10.1007/s10587-011-0054-6},
mrnumber = {2886262},
zbl = {1249.53006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0054-6/}
}
TY - JOUR
AU - Černý, Robert
AU - Kolář, Jan
AU - Rokyta, Mirko
TI - Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$
JO - Czechoslovak Mathematical Journal
PY - 2011
SP - 1141
EP - 1167
VL - 61
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0054-6/
DO - 10.1007/s10587-011-0054-6
LA - en
ID - 10_1007_s10587_011_0054_6
ER -
%0 Journal Article
%A Černý, Robert
%A Kolář, Jan
%A Rokyta, Mirko
%T Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$
%J Czechoslovak Mathematical Journal
%D 2011
%P 1141-1167
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0054-6/
%R 10.1007/s10587-011-0054-6
%G en
%F 10_1007_s10587_011_0054_6
Černý, Robert; Kolář, Jan; Rokyta, Mirko. Concentrated monotone measures with non-unique tangential behavior in $\mathbb{R}^3$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1141-1167. doi: 10.1007/s10587-011-0054-6
Cité par Sources :