Order bounded orthosymmetric bilinear operator
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.
DOI : 10.1007/s10587-011-0052-8
Classification : 06F25, 46A40, 47A65
Keywords: vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
@article{10_1007_s10587_011_0052_8,
     author = {Chil, Elmiloud},
     title = {Order bounded orthosymmetric bilinear operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {873--880},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.1007/s10587-011-0052-8},
     mrnumber = {2886242},
     zbl = {1249.06048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/}
}
TY  - JOUR
AU  - Chil, Elmiloud
TI  - Order bounded orthosymmetric bilinear operator
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 873
EP  - 880
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/
DO  - 10.1007/s10587-011-0052-8
LA  - en
ID  - 10_1007_s10587_011_0052_8
ER  - 
%0 Journal Article
%A Chil, Elmiloud
%T Order bounded orthosymmetric bilinear operator
%J Czechoslovak Mathematical Journal
%D 2011
%P 873-880
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/
%R 10.1007/s10587-011-0052-8
%G en
%F 10_1007_s10587_011_0052_8
Chil, Elmiloud. Order bounded orthosymmetric bilinear operator. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880. doi : 10.1007/s10587-011-0052-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/

Cité par Sources :