Keywords: Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity
@article{10_1007_s10587_011_0045_7,
author = {Wei, Yangjiang and Nan, Jizhu and Tang, Gaohua},
title = {The cubic mapping graph for the ring of {Gaussian} integers modulo $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {1023--1036},
year = {2011},
volume = {61},
number = {4},
doi = {10.1007/s10587-011-0045-7},
mrnumber = {2886254},
zbl = {1249.05061},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/}
}
TY - JOUR AU - Wei, Yangjiang AU - Nan, Jizhu AU - Tang, Gaohua TI - The cubic mapping graph for the ring of Gaussian integers modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2011 SP - 1023 EP - 1036 VL - 61 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/ DO - 10.1007/s10587-011-0045-7 LA - en ID - 10_1007_s10587_011_0045_7 ER -
%0 Journal Article %A Wei, Yangjiang %A Nan, Jizhu %A Tang, Gaohua %T The cubic mapping graph for the ring of Gaussian integers modulo $n$ %J Czechoslovak Mathematical Journal %D 2011 %P 1023-1036 %V 61 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/ %R 10.1007/s10587-011-0045-7 %G en %F 10_1007_s10587_011_0045_7
Wei, Yangjiang; Nan, Jizhu; Tang, Gaohua. The cubic mapping graph for the ring of Gaussian integers modulo $n$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1023-1036. doi: 10.1007/s10587-011-0045-7
[1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings. Commentat. Math. Univ. Carol. 47 (2006), 1-10. | MR
[2] Cross, J.: The Euler $\phi$-function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518-528. | DOI | MR | Zbl
[3] Pan, C. D., Pan, C. B.: Elementary Number Theory (2nd edition). Beijing University Publishing Company Beijing (2005), Chinese.
[4] Skowronek-Kaziów, J.: Properties of digraphs connected with some congruence relations. Czech. Math. J. 59 (2009), 39-49. | DOI | MR
[5] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb Z_n$. Inf. Process. Lett. 108 (2008), 165-169. | DOI | MR
[6] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR
[7] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb Z_n[i]$. J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.
[8] Tang, G. H., Su, H. D., Yi, Z.: The structure of the unit group of $\mathbb Z_n[i]$. J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41.
[9] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers. Ars Combin. 97 (2010), 101-110. | MR
Cité par Sources :