The cubic mapping graph for the ring of Gaussian integers modulo $n$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1023-1036
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline 1$ and $\overline 0$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _{2}(n)$ is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$.
The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline 1$ and $\overline 0$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _{2}(n)$ is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$.
DOI : 10.1007/s10587-011-0045-7
Classification : 05C05, 11A07, 13M05
Keywords: Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity
@article{10_1007_s10587_011_0045_7,
     author = {Wei, Yangjiang and Nan, Jizhu and Tang, Gaohua},
     title = {The cubic mapping graph for the ring of {Gaussian} integers modulo $n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1023--1036},
     year = {2011},
     volume = {61},
     number = {4},
     doi = {10.1007/s10587-011-0045-7},
     mrnumber = {2886254},
     zbl = {1249.05061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/}
}
TY  - JOUR
AU  - Wei, Yangjiang
AU  - Nan, Jizhu
AU  - Tang, Gaohua
TI  - The cubic mapping graph for the ring of Gaussian integers modulo $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 1023
EP  - 1036
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/
DO  - 10.1007/s10587-011-0045-7
LA  - en
ID  - 10_1007_s10587_011_0045_7
ER  - 
%0 Journal Article
%A Wei, Yangjiang
%A Nan, Jizhu
%A Tang, Gaohua
%T The cubic mapping graph for the ring of Gaussian integers modulo $n$
%J Czechoslovak Mathematical Journal
%D 2011
%P 1023-1036
%V 61
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0045-7/
%R 10.1007/s10587-011-0045-7
%G en
%F 10_1007_s10587_011_0045_7
Wei, Yangjiang; Nan, Jizhu; Tang, Gaohua. The cubic mapping graph for the ring of Gaussian integers modulo $n$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1023-1036. doi: 10.1007/s10587-011-0045-7

[1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings. Commentat. Math. Univ. Carol. 47 (2006), 1-10. | MR

[2] Cross, J.: The Euler $\phi$-function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518-528. | DOI | MR | Zbl

[3] Pan, C. D., Pan, C. B.: Elementary Number Theory (2nd edition). Beijing University Publishing Company Beijing (2005), Chinese.

[4] Skowronek-Kaziów, J.: Properties of digraphs connected with some congruence relations. Czech. Math. J. 59 (2009), 39-49. | DOI | MR

[5] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb Z_n$. Inf. Process. Lett. 108 (2008), 165-169. | DOI | MR

[6] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR

[7] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb Z_n[i]$. J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.

[8] Tang, G. H., Su, H. D., Yi, Z.: The structure of the unit group of $\mathbb Z_n[i]$. J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41.

[9] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers. Ars Combin. 97 (2010), 101-110. | MR

Cité par Sources :