Triple automorphisms of simple Lie algebras
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1007-1016
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An invertible linear map $\varphi $ on a Lie algebra $L$ is called a triple automorphism of it if $\varphi ([x,[y,z]])=[\varphi (x),[ \varphi (y),\varphi (z)]]$ for $\forall x, y, z\in L$. Let $\frak {g}$ be a finite-dimensional simple Lie algebra of rank $l$ defined over an algebraically closed field $F$ of characteristic zero, $\mathfrak {p}$ an arbitrary parabolic subalgebra of $\mathfrak {g}$. It is shown in this paper that an invertible linear map $\varphi $ on $\mathfrak {p}$ is a triple automorphism if and only if either $\varphi $ itself is an automorphism of $\mathfrak {p}$ or it is the composition of an automorphism of $\mathfrak {p}$ and an extremal map of order $2$.
An invertible linear map $\varphi $ on a Lie algebra $L$ is called a triple automorphism of it if $\varphi ([x,[y,z]])=[\varphi (x),[ \varphi (y),\varphi (z)]]$ for $\forall x, y, z\in L$. Let $\frak {g}$ be a finite-dimensional simple Lie algebra of rank $l$ defined over an algebraically closed field $F$ of characteristic zero, $\mathfrak {p}$ an arbitrary parabolic subalgebra of $\mathfrak {g}$. It is shown in this paper that an invertible linear map $\varphi $ on $\mathfrak {p}$ is a triple automorphism if and only if either $\varphi $ itself is an automorphism of $\mathfrak {p}$ or it is the composition of an automorphism of $\mathfrak {p}$ and an extremal map of order $2$.
DOI :
10.1007/s10587-011-0043-9
Classification :
17B20, 17B30, 17B40
Keywords: simple Lie algebras; parabolic subalgebras; triple automorphisms of Lie algebras
Keywords: simple Lie algebras; parabolic subalgebras; triple automorphisms of Lie algebras
@article{10_1007_s10587_011_0043_9,
author = {Wang, Dengyin and Yu, Xiaoxiang},
title = {Triple automorphisms of simple {Lie} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1007--1016},
year = {2011},
volume = {61},
number = {4},
doi = {10.1007/s10587-011-0043-9},
mrnumber = {2886252},
zbl = {1249.17026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0043-9/}
}
TY - JOUR AU - Wang, Dengyin AU - Yu, Xiaoxiang TI - Triple automorphisms of simple Lie algebras JO - Czechoslovak Mathematical Journal PY - 2011 SP - 1007 EP - 1016 VL - 61 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0043-9/ DO - 10.1007/s10587-011-0043-9 LA - en ID - 10_1007_s10587_011_0043_9 ER -
Wang, Dengyin; Yu, Xiaoxiang. Triple automorphisms of simple Lie algebras. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 1007-1016. doi: 10.1007/s10587-011-0043-9
Cité par Sources :