On the maximal operator of Walsh-Kaczmarz-Fejér means
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 673-686.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we prove that the maximal operator $$\tilde {\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb P}}\frac {|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},$$ where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$
DOI : 10.1007/s10587-011-0038-6
Classification : 42B25, 42C10
Keywords: Walsh-Kaczmarz system; Fejér means; maximal operator
@article{10_1007_s10587_011_0038_6,
     author = {Goginava, Ushangi and Nagy, K\'aroly},
     title = {On the maximal operator of {Walsh-Kaczmarz-Fej\'er} means},
     journal = {Czechoslovak Mathematical Journal},
     pages = {673--686},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2011},
     doi = {10.1007/s10587-011-0038-6},
     mrnumber = {2853082},
     zbl = {1249.42011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/}
}
TY  - JOUR
AU  - Goginava, Ushangi
AU  - Nagy, Károly
TI  - On the maximal operator of Walsh-Kaczmarz-Fejér means
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 673
EP  - 686
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/
DO  - 10.1007/s10587-011-0038-6
LA  - en
ID  - 10_1007_s10587_011_0038_6
ER  - 
%0 Journal Article
%A Goginava, Ushangi
%A Nagy, Károly
%T On the maximal operator of Walsh-Kaczmarz-Fejér means
%J Czechoslovak Mathematical Journal
%D 2011
%P 673-686
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/
%R 10.1007/s10587-011-0038-6
%G en
%F 10_1007_s10587_011_0038_6
Goginava, Ushangi; Nagy, Károly. On the maximal operator of Walsh-Kaczmarz-Fejér means. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 673-686. doi : 10.1007/s10587-011-0038-6. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/

Cité par Sources :