On the maximal operator of Walsh-Kaczmarz-Fejér means
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 673-686
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we prove that the maximal operator $$\tilde {\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb P}}\frac {|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},$$ where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$
DOI :
10.1007/s10587-011-0038-6
Classification :
42B25, 42C10
Keywords: Walsh-Kaczmarz system; Fejér means; maximal operator
Keywords: Walsh-Kaczmarz system; Fejér means; maximal operator
@article{10_1007_s10587_011_0038_6,
author = {Goginava, Ushangi and Nagy, K\'aroly},
title = {On the maximal operator of {Walsh-Kaczmarz-Fej\'er} means},
journal = {Czechoslovak Mathematical Journal},
pages = {673--686},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {2011},
doi = {10.1007/s10587-011-0038-6},
mrnumber = {2853082},
zbl = {1249.42011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/}
}
TY - JOUR AU - Goginava, Ushangi AU - Nagy, Károly TI - On the maximal operator of Walsh-Kaczmarz-Fejér means JO - Czechoslovak Mathematical Journal PY - 2011 SP - 673 EP - 686 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/ DO - 10.1007/s10587-011-0038-6 LA - en ID - 10_1007_s10587_011_0038_6 ER -
%0 Journal Article %A Goginava, Ushangi %A Nagy, Károly %T On the maximal operator of Walsh-Kaczmarz-Fejér means %J Czechoslovak Mathematical Journal %D 2011 %P 673-686 %V 61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0038-6/ %R 10.1007/s10587-011-0038-6 %G en %F 10_1007_s10587_011_0038_6
Goginava, Ushangi; Nagy, Károly. On the maximal operator of Walsh-Kaczmarz-Fejér means. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 673-686. doi: 10.1007/s10587-011-0038-6
Cité par Sources :