Affine connections on almost para-cosymplectic manifolds
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 863-871 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
DOI : 10.1007/s10587-011-0033-y
Classification : 53C05, 53C15, 58A10, 70G45
Keywords: para-cosymplectic manifold; harmonic product structure
@article{10_1007_s10587_011_0033_y,
     author = {Blaga, Adara M.},
     title = {Affine connections on almost para-cosymplectic manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {863--871},
     year = {2011},
     volume = {61},
     number = {3},
     doi = {10.1007/s10587-011-0033-y},
     mrnumber = {2853097},
     zbl = {1249.53038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0033-y/}
}
TY  - JOUR
AU  - Blaga, Adara M.
TI  - Affine connections on almost para-cosymplectic manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 863
EP  - 871
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0033-y/
DO  - 10.1007/s10587-011-0033-y
LA  - en
ID  - 10_1007_s10587_011_0033_y
ER  - 
%0 Journal Article
%A Blaga, Adara M.
%T Affine connections on almost para-cosymplectic manifolds
%J Czechoslovak Mathematical Journal
%D 2011
%P 863-871
%V 61
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0033-y/
%R 10.1007/s10587-011-0033-y
%G en
%F 10_1007_s10587_011_0033_y
Blaga, Adara M. Affine connections on almost para-cosymplectic manifolds. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 863-871. doi: 10.1007/s10587-011-0033-y

[1] Bejan, C. L., Ferrara, M.: Para-Kähler manifolds of quasi-constant $P$-sectional curvature. Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, Serbia and Montenegro, June 26--July 2, 2005 N. Bokan Cigoja Publishing Company (2006), 29-36. | MR | Zbl

[2] Dacko, P., Olszak, Z.: On weakly para-cosymplectic manifolds of dimension $3$. J. Geom. Phys. 57 (2007), 561-570. | DOI | MR | Zbl

[3] Erdem, S.: On almost (para)contact (hyperbolic) metric manifolds and harmonicity of $(\varphi,\varphi')$-holomorphic maps between them. Houston J. Math. 28 (2002), 21-45. | MR

[4] Funabashi, S., Kim, H. S., Kim, Y.-M., Pak, J. S.: Traceless component of the conformal curvature tensor in Kähler manifold. Czech. Math. J. 56 (2006), 857-874. | DOI | MR | Zbl

[5] Jianming, W.: Harmonic complex structures. Chin. Ann. Math., Ser. A 30 (2009), 761-764; arXiv: 1007.4392v1/math.DG (2010). | MR

[6] Olszak, Z.: On almost cosymplectic manifolds. Kodai Math. J. 4 (1981), 239-250. | DOI | MR | Zbl

[7] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balk. 1 (1971), 195-213. | MR

[8] Schäfer, L.: $tt^*$-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24 (2006), 60-89. | DOI | MR | Zbl

[9] Xin, Y. L.: Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and Their Applications 23. Birkhäuser Boston (1996). | MR

Cité par Sources :