Factorization theorem for $1$-summing operators
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 785-793 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for $1$-summing operators between Banach spaces.
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for $1$-summing operators between Banach spaces.
DOI : 10.1007/s10587-011-0027-9
Classification : 46E30, 46G10, 47A68, 47B10, 47B47
Keywords: vector measures; integrable functions; sequences on Banach spaces; summing operators
@article{10_1007_s10587_011_0027_9,
     author = {Ferrando, Irene},
     title = {Factorization theorem for $1$-summing operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {785--793},
     year = {2011},
     volume = {61},
     number = {3},
     doi = {10.1007/s10587-011-0027-9},
     mrnumber = {2853092},
     zbl = {1249.47007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0027-9/}
}
TY  - JOUR
AU  - Ferrando, Irene
TI  - Factorization theorem for $1$-summing operators
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 785
EP  - 793
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0027-9/
DO  - 10.1007/s10587-011-0027-9
LA  - en
ID  - 10_1007_s10587_011_0027_9
ER  - 
%0 Journal Article
%A Ferrando, Irene
%T Factorization theorem for $1$-summing operators
%J Czechoslovak Mathematical Journal
%D 2011
%P 785-793
%V 61
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0027-9/
%R 10.1007/s10587-011-0027-9
%G en
%F 10_1007_s10587_011_0027_9
Ferrando, Irene. Factorization theorem for $1$-summing operators. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 785-793. doi: 10.1007/s10587-011-0027-9

[1] Bartle, R. G., Dunford, N., Schwartz, J.: Weak Compactness and Vector Measures. Canad. J. Math. 7 (1955), 289-305. | DOI | MR | Zbl

[2] Blasco, O., Calabuig, J. M., Signes, T.: A bilinear version of Orlicz-Pettis Theorem. J. Math. Anal. Appl. 348 (2008), 150-164. | DOI | MR | Zbl

[3] Calabuig, J. M.: Integración bilineal. Tesis doctoral (2004).

[4] Curbera, G. P.: Operators into $L^1$ of a vector measure and applications to Banach lattices. Math. Ann. 293 (1992), 317-330. | DOI | MR

[5] Diestel, J., Jr., J. J. Uhl: Vector Measures. Amer. Math. Soc. Surveys 15, Providence, R.I. (1977). | MR | Zbl

[6] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, Cambridge (1995). | MR | Zbl

[7] Ferrando, I., Rodríguez, J.: The weak topology on $L^{p}$ of a vector measure. Topology and its Applications 55 (2008), 1439-1444. | MR

[8] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157-165. | DOI | MR | Zbl

[9] Okada, S., Ricker, W., Sánchez-Pérez, E. A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Advances and Applications, Vol. 180, Birkhäuser (2008). | MR

Cité par Sources :