Keywords: vector measures; integrable functions; sequences on Banach spaces; summing operators
@article{10_1007_s10587_011_0027_9,
author = {Ferrando, Irene},
title = {Factorization theorem for $1$-summing operators},
journal = {Czechoslovak Mathematical Journal},
pages = {785--793},
year = {2011},
volume = {61},
number = {3},
doi = {10.1007/s10587-011-0027-9},
mrnumber = {2853092},
zbl = {1249.47007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0027-9/}
}
TY - JOUR AU - Ferrando, Irene TI - Factorization theorem for $1$-summing operators JO - Czechoslovak Mathematical Journal PY - 2011 SP - 785 EP - 793 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0027-9/ DO - 10.1007/s10587-011-0027-9 LA - en ID - 10_1007_s10587_011_0027_9 ER -
Ferrando, Irene. Factorization theorem for $1$-summing operators. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 785-793. doi: 10.1007/s10587-011-0027-9
[1] Bartle, R. G., Dunford, N., Schwartz, J.: Weak Compactness and Vector Measures. Canad. J. Math. 7 (1955), 289-305. | DOI | MR | Zbl
[2] Blasco, O., Calabuig, J. M., Signes, T.: A bilinear version of Orlicz-Pettis Theorem. J. Math. Anal. Appl. 348 (2008), 150-164. | DOI | MR | Zbl
[3] Calabuig, J. M.: Integración bilineal. Tesis doctoral (2004).
[4] Curbera, G. P.: Operators into $L^1$ of a vector measure and applications to Banach lattices. Math. Ann. 293 (1992), 317-330. | DOI | MR
[5] Diestel, J., Jr., J. J. Uhl: Vector Measures. Amer. Math. Soc. Surveys 15, Providence, R.I. (1977). | MR | Zbl
[6] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, Cambridge (1995). | MR | Zbl
[7] Ferrando, I., Rodríguez, J.: The weak topology on $L^{p}$ of a vector measure. Topology and its Applications 55 (2008), 1439-1444. | MR
[8] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157-165. | DOI | MR | Zbl
[9] Okada, S., Ricker, W., Sánchez-Pérez, E. A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Advances and Applications, Vol. 180, Birkhäuser (2008). | MR
Cité par Sources :