Every weakly initially ${\mathfrak m}$-compact topological space is ${\mathfrak m}$pcap
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 781-784.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The statement in the title solves a problem raised by T. Retta. We also present a variation of the result in terms of $[\mu ,\kappa ]$-compactness.
DOI : 10.1007/s10587-011-0026-x
Classification : 03E75, 54D20
Keywords: weak initial compactness; ${\mathfrak m}$pcap; $[\mu, \kappa ]$-compactness; pseudo-$(\kappa, \lambda )$-compactness; covering number
@article{10_1007_s10587_011_0026_x,
     author = {Lipparini, Paolo},
     title = {Every weakly initially ${\mathfrak m}$-compact topological space is ${\mathfrak m}$pcap},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--784},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2011},
     doi = {10.1007/s10587-011-0026-x},
     mrnumber = {2853091},
     zbl = {1249.54053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0026-x/}
}
TY  - JOUR
AU  - Lipparini, Paolo
TI  - Every weakly initially ${\mathfrak m}$-compact topological space is ${\mathfrak m}$pcap
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 781
EP  - 784
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0026-x/
DO  - 10.1007/s10587-011-0026-x
LA  - en
ID  - 10_1007_s10587_011_0026_x
ER  - 
%0 Journal Article
%A Lipparini, Paolo
%T Every weakly initially ${\mathfrak m}$-compact topological space is ${\mathfrak m}$pcap
%J Czechoslovak Mathematical Journal
%D 2011
%P 781-784
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0026-x/
%R 10.1007/s10587-011-0026-x
%G en
%F 10_1007_s10587_011_0026_x
Lipparini, Paolo. Every weakly initially ${\mathfrak m}$-compact topological space is ${\mathfrak m}$pcap. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 781-784. doi : 10.1007/s10587-011-0026-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0026-x/

Cité par Sources :