Isomorphic digraphs from powers modulo $p$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 771-779
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $p$ be a prime. We assign to each positive number $k$ a digraph $G_{p}^{k}$ whose set of vertices is $\{1,2,\ldots ,p-1\}$ and there exists a directed edge from a vertex $a$ to a vertex $b$ if $a^k\equiv b \pmod {p}$. In this paper we obtain a necessary and sufficient condition for $G_{p}^{k_{1}}\simeq G_{p}^{k_{2}}$.
Let $p$ be a prime. We assign to each positive number $k$ a digraph $G_{p}^{k}$ whose set of vertices is $\{1,2,\ldots ,p-1\}$ and there exists a directed edge from a vertex $a$ to a vertex $b$ if $a^k\equiv b \pmod {p}$. In this paper we obtain a necessary and sufficient condition for $G_{p}^{k_{1}}\simeq G_{p}^{k_{2}}$.
DOI :
10.1007/s10587-011-0025-y
Classification :
05C20, 05C38, 11A15
Keywords: congruence; digraph; component; height
Keywords: congruence; digraph; component; height
@article{10_1007_s10587_011_0025_y,
author = {Deng, Guixin and Yuan, Pingzhi},
title = {Isomorphic digraphs from powers modulo $p$},
journal = {Czechoslovak Mathematical Journal},
pages = {771--779},
year = {2011},
volume = {61},
number = {3},
doi = {10.1007/s10587-011-0025-y},
mrnumber = {2853090},
zbl = {1249.05162},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/}
}
TY - JOUR AU - Deng, Guixin AU - Yuan, Pingzhi TI - Isomorphic digraphs from powers modulo $p$ JO - Czechoslovak Mathematical Journal PY - 2011 SP - 771 EP - 779 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/ DO - 10.1007/s10587-011-0025-y LA - en ID - 10_1007_s10587_011_0025_y ER -
Deng, Guixin; Yuan, Pingzhi. Isomorphic digraphs from powers modulo $p$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 771-779. doi: 10.1007/s10587-011-0025-y
Cité par Sources :