Isomorphic digraphs from powers modulo $p$
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 771-779.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p$ be a prime. We assign to each positive number $k$ a digraph $G_{p}^{k}$ whose set of vertices is $\{1,2,\ldots ,p-1\}$ and there exists a directed edge from a vertex $a$ to a vertex $b$ if $a^k\equiv b \pmod {p}$. In this paper we obtain a necessary and sufficient condition for $G_{p}^{k_{1}}\simeq G_{p}^{k_{2}}$.
DOI : 10.1007/s10587-011-0025-y
Classification : 05C20, 05C38, 11A15
Keywords: congruence; digraph; component; height
@article{10_1007_s10587_011_0025_y,
     author = {Deng, Guixin and Yuan, Pingzhi},
     title = {Isomorphic digraphs from powers modulo $p$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {771--779},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2011},
     doi = {10.1007/s10587-011-0025-y},
     mrnumber = {2853090},
     zbl = {1249.05162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/}
}
TY  - JOUR
AU  - Deng, Guixin
AU  - Yuan, Pingzhi
TI  - Isomorphic digraphs from powers modulo $p$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 771
EP  - 779
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/
DO  - 10.1007/s10587-011-0025-y
LA  - en
ID  - 10_1007_s10587_011_0025_y
ER  - 
%0 Journal Article
%A Deng, Guixin
%A Yuan, Pingzhi
%T Isomorphic digraphs from powers modulo $p$
%J Czechoslovak Mathematical Journal
%D 2011
%P 771-779
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/
%R 10.1007/s10587-011-0025-y
%G en
%F 10_1007_s10587_011_0025_y
Deng, Guixin; Yuan, Pingzhi. Isomorphic digraphs from powers modulo $p$. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 771-779. doi : 10.1007/s10587-011-0025-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0025-y/

Cité par Sources :