The $\bar {\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 721-731.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb {C}^{n}$ with a Lipschitz boundary, we prove that the $\bar {\partial }$-Neumann operator $N$ satisfies a subelliptic $(1/2)$-estimate on $\Omega $ and $N$ can be extended as a bounded operator from Sobolev $(-1/2)$-spaces to Sobolev $(1/2)$-spaces.
DOI : 10.1007/s10587-011-0021-2
Classification : 32F10, 32W05
Keywords: Sobolev estimate; $\bar \partial $ and $\bar \partial $-Neumann operator; $q$-pseudoconvex domains; Lipschitz domains
@article{10_1007_s10587_011_0021_2,
     author = {Saber, Sayed},
     title = {The $\bar {\partial }${-Neumann} operator on {Lipschitz} $q$-pseudoconvex domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {721--731},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2011},
     doi = {10.1007/s10587-011-0021-2},
     mrnumber = {2853086},
     zbl = {1249.32016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0021-2/}
}
TY  - JOUR
AU  - Saber, Sayed
TI  - The $\bar {\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 721
EP  - 731
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0021-2/
DO  - 10.1007/s10587-011-0021-2
LA  - en
ID  - 10_1007_s10587_011_0021_2
ER  - 
%0 Journal Article
%A Saber, Sayed
%T The $\bar {\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains
%J Czechoslovak Mathematical Journal
%D 2011
%P 721-731
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0021-2/
%R 10.1007/s10587-011-0021-2
%G en
%F 10_1007_s10587_011_0021_2
Saber, Sayed. The $\bar {\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 3, pp. 721-731. doi : 10.1007/s10587-011-0021-2. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0021-2/

Cité par Sources :