Some notes on embedding for anisotropic Sobolev spaces
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_{\Lambda ^{p,q}(w)}^{r_1,\dots ,r_n}$ and $W_{X}^{r_1,\dots ,r_n}$, where $\Lambda ^{p,q}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb R^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.
In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_{\Lambda ^{p,q}(w)}^{r_1,\dots ,r_n}$ and $W_{X}^{r_1,\dots ,r_n}$, where $\Lambda ^{p,q}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb R^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.
DOI :
10.1007/s10587-011-0020-3
Classification :
42B35, 46E35
Keywords: Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces
Keywords: Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces
@article{10_1007_s10587_011_0020_3,
author = {Li, Hongliang and Sun, Quinxiu},
title = {Some notes on embedding for anisotropic {Sobolev} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {97--111},
year = {2011},
volume = {61},
number = {1},
doi = {10.1007/s10587-011-0020-3},
mrnumber = {2782762},
zbl = {1224.46065},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/}
}
TY - JOUR AU - Li, Hongliang AU - Sun, Quinxiu TI - Some notes on embedding for anisotropic Sobolev spaces JO - Czechoslovak Mathematical Journal PY - 2011 SP - 97 EP - 111 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/ DO - 10.1007/s10587-011-0020-3 LA - en ID - 10_1007_s10587_011_0020_3 ER -
%0 Journal Article %A Li, Hongliang %A Sun, Quinxiu %T Some notes on embedding for anisotropic Sobolev spaces %J Czechoslovak Mathematical Journal %D 2011 %P 97-111 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/ %R 10.1007/s10587-011-0020-3 %G en %F 10_1007_s10587_011_0020_3
Li, Hongliang; Sun, Quinxiu. Some notes on embedding for anisotropic Sobolev spaces. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111. doi: 10.1007/s10587-011-0020-3
Cité par Sources :