Some notes on embedding for anisotropic Sobolev spaces
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_{\Lambda ^{p,q}(w)}^{r_1,\dots ,r_n}$ and $W_{X}^{r_1,\dots ,r_n}$, where $\Lambda ^{p,q}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb R^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.
DOI : 10.1007/s10587-011-0020-3
Classification : 42B35, 46E35
Keywords: Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces
@article{10_1007_s10587_011_0020_3,
     author = {Li, Hongliang and Sun, Quinxiu},
     title = {Some notes on embedding for anisotropic {Sobolev} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0020-3},
     mrnumber = {2782762},
     zbl = {1224.46065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/}
}
TY  - JOUR
AU  - Li, Hongliang
AU  - Sun, Quinxiu
TI  - Some notes on embedding for anisotropic Sobolev spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 97
EP  - 111
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/
DO  - 10.1007/s10587-011-0020-3
LA  - en
ID  - 10_1007_s10587_011_0020_3
ER  - 
%0 Journal Article
%A Li, Hongliang
%A Sun, Quinxiu
%T Some notes on embedding for anisotropic Sobolev spaces
%J Czechoslovak Mathematical Journal
%D 2011
%P 97-111
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/
%R 10.1007/s10587-011-0020-3
%G en
%F 10_1007_s10587_011_0020_3
Li, Hongliang; Sun, Quinxiu. Some notes on embedding for anisotropic Sobolev spaces. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 97-111. doi : 10.1007/s10587-011-0020-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0020-3/

Cité par Sources :