Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q p \infty $
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 7-26.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a new Sobolev type function space called the space with multiweighted derivatives $W_{p,\bar {\alpha }}^n$, where $\bar {\alpha } = (\alpha _0, \alpha _1, \ldots , \alpha _n)$, $\alpha _i \in \Bbb R$, $i=0,1, \ldots , n$, and $\|f\|_{W_{p,{\bar \alpha }}^n} = \|D_{{\bar \alpha }}^n f\|_p + \sum _{i=0}^{n-1} |D_{\bar \alpha }^i f(1)|$, $$ D_{{\bar \alpha }}^0 f(t) = t^{\alpha _0} f(t), \quad D_{{\bar \alpha }}^i f(t) = t^{\alpha _i} \frac {{\rm d}}{{\rm d}t} D_{{\bar \alpha }}^{i-1} f(t), \enspace i=1, 2, \ldots , n. $$ We establish necessary and sufficient conditions for the boundedness and compactness of the embedding $W_{p,{\bar \alpha }}^n \hookrightarrow W_{q,{\bar \beta }}^m $, when $1 \leq q p \infty $, $0\leq m $.
DOI : 10.1007/s10587-011-0014-1
Classification : 46E30, 46E35
Keywords: weighted function space; multiweighted derivative; embedding theorems; compactness.
@article{10_1007_s10587_011_0014_1,
     author = {Abdikalikova, Zamira and Oinarov, Ryskul and Persson, Lars-Erik},
     title = {Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {7--26},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0014-1},
     mrnumber = {2782756},
     zbl = {1224.46062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/}
}
TY  - JOUR
AU  - Abdikalikova, Zamira
AU  - Oinarov, Ryskul
AU  - Persson, Lars-Erik
TI  - Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 7
EP  - 26
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/
DO  - 10.1007/s10587-011-0014-1
LA  - en
ID  - 10_1007_s10587_011_0014_1
ER  - 
%0 Journal Article
%A Abdikalikova, Zamira
%A Oinarov, Ryskul
%A Persson, Lars-Erik
%T Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $
%J Czechoslovak Mathematical Journal
%D 2011
%P 7-26
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/
%R 10.1007/s10587-011-0014-1
%G en
%F 10_1007_s10587_011_0014_1
Abdikalikova, Zamira; Oinarov, Ryskul; Persson, Lars-Erik. Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 7-26. doi : 10.1007/s10587-011-0014-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/

Cité par Sources :