Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q p \infty $
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 7-26
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a new Sobolev type function space called the space with multiweighted derivatives $W_{p,\bar {\alpha }}^n$, where $\bar {\alpha } = (\alpha _0, \alpha _1, \ldots , \alpha _n)$, $\alpha _i \in \Bbb R$, $i=0,1, \ldots , n$, and $\|f\|_{W_{p,{\bar \alpha }}^n} = \|D_{{\bar \alpha }}^n f\|_p + \sum _{i=0}^{n-1} |D_{\bar \alpha }^i f(1)|$, $$ D_{{\bar \alpha }}^0 f(t) = t^{\alpha _0} f(t), \quad D_{{\bar \alpha }}^i f(t) = t^{\alpha _i} \frac {{\rm d}}{{\rm d}t} D_{{\bar \alpha }}^{i-1} f(t), \enspace i=1, 2, \ldots , n. $$ We establish necessary and sufficient conditions for the boundedness and compactness of the embedding $W_{p,{\bar \alpha }}^n \hookrightarrow W_{q,{\bar \beta }}^m $, when $1 \leq q p \infty $, $0\leq m $.
DOI :
10.1007/s10587-011-0014-1
Classification :
46E30, 46E35
Keywords: weighted function space; multiweighted derivative; embedding theorems; compactness.
Keywords: weighted function space; multiweighted derivative; embedding theorems; compactness.
@article{10_1007_s10587_011_0014_1,
author = {Abdikalikova, Zamira and Oinarov, Ryskul and Persson, Lars-Erik},
title = {Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $},
journal = {Czechoslovak Mathematical Journal},
pages = {7--26},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {2011},
doi = {10.1007/s10587-011-0014-1},
mrnumber = {2782756},
zbl = {1224.46062},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/}
}
TY - JOUR AU - Abdikalikova, Zamira AU - Oinarov, Ryskul AU - Persson, Lars-Erik TI - Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $ JO - Czechoslovak Mathematical Journal PY - 2011 SP - 7 EP - 26 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/ DO - 10.1007/s10587-011-0014-1 LA - en ID - 10_1007_s10587_011_0014_1 ER -
%0 Journal Article %A Abdikalikova, Zamira %A Oinarov, Ryskul %A Persson, Lars-Erik %T Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $ %J Czechoslovak Mathematical Journal %D 2011 %P 7-26 %V 61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0014-1/ %R 10.1007/s10587-011-0014-1 %G en %F 10_1007_s10587_011_0014_1
Abdikalikova, Zamira; Oinarov, Ryskul; Persson, Lars-Erik. Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 7-26. doi: 10.1007/s10587-011-0014-1
Cité par Sources :