Keywords: distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary
@article{10_1007_s10587_011_0010_5,
author = {Rataj, Jan and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {Properties of distance functions on convex surfaces and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {247--269},
year = {2011},
volume = {61},
number = {1},
doi = {10.1007/s10587-011-0010-5},
mrnumber = {2782772},
zbl = {1224.53105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/}
}
TY - JOUR AU - Rataj, Jan AU - Zajíček, Luděk TI - Properties of distance functions on convex surfaces and applications JO - Czechoslovak Mathematical Journal PY - 2011 SP - 247 EP - 269 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/ DO - 10.1007/s10587-011-0010-5 LA - en ID - 10_1007_s10587_011_0010_5 ER -
%0 Journal Article %A Rataj, Jan %A Zajíček, Luděk %T Properties of distance functions on convex surfaces and applications %J Czechoslovak Mathematical Journal %D 2011 %P 247-269 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/ %R 10.1007/s10587-011-0010-5 %G en %F 10_1007_s10587_011_0010_5
Rataj, Jan; Zajíček, Luděk. Properties of distance functions on convex surfaces and applications. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 247-269. doi: 10.1007/s10587-011-0010-5
[1] Aleksandrov, A. D.: Intrinsic Geometry of Convex Surfaces. OGIZ Moscow-Leningrad (1948), Russian. | MR
[2] Aleksandrov, A. D.: On surfaces represented as the difference of convex functions. Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 Russian. | MR
[3] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33. American Mathematical Society (AMS) Providence (2001). | DOI | MR
[4] Buyalo, S. V.: Shortest arcs on convex hypersurfaces of Riemannian spaces. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132 Russian. | MR
[5] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58. Birkhäuser Boston (2004). | MR
[6] Ferry, S.: When $\varepsilon $-boundaries are manifolds. Fund. Math. 90 (1976), 199-210. | DOI | MR | Zbl
[7] Fu, J. H. G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 (1985), 1025-1046. | DOI | MR | Zbl
[8] Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9 (1959), 707-713. | DOI | MR | Zbl
[9] Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications. Math. Z. 246 (2004), 237-272. | MR | Zbl
[10] Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238 (2001), 269-316. | DOI | MR | Zbl
[11] Mantegazza, C., Mennucci, A. C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optimization 47 (2003), 1-25. | DOI | MR
[12] Milka, A. D.: Shortest arcs on convex surfaces. Dokl. Akad. Nauk SSSR 248 (1979), 34-36 Russian. | MR | Zbl
[13] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330. Springer Berlin (2006). | MR
[14] Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39 (1994), 629-658. | DOI | MR | Zbl
[15] Perelman, G.: DC structure on Alexandrov space. Unpublished preprint (1995), available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.
[16] Petrunin, A.: Semiconcave functions in Alexandrov's geometry. In: Surveys in Differential Geometry, Vol. XI J. Cheeger, K. Grove International Press Somerville (2007), 137-201. | MR | Zbl
[17] Plaut, C.: Metric spaces of curvature $\geq k$. In: Handbook of Geometric Topology Elsevier Amsterdam (2002), 819-898. | MR | Zbl
[18] Rataj, J., Zajíček, L.: Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces. arXiv 0911.4020.
[19] Reshetnyak, Yu. G.: On a generalization of convex surfaces. Math. Sb., N. Ser. 40 (1956), 381-398 Russian. | MR
[20] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambrigde University Press Cambrigde (1993). | MR | Zbl
[21] Shiohama, K., Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, A. L. Besse Société Mathématique de France Paris (1996), 531-559. | MR | Zbl
[22] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Diss. Math. Vol. 289 (1989). | MR
[23] Walter, R.: Some analytical properties of geodesically convex sets. Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282. | DOI | MR | Zbl
[24] Whitehead, J. H. C.: Manifolds with transverse fields in Euclidean space. Ann. Math. 73 (1961), 154-212. | DOI | MR | Zbl
[25] Zajíček, L.: On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979), 340-348. | MR
[26] Zajíček, L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czechoslovak Math. J. 33 (1983), 292-308. | MR
[27] Zajíček, L.: On Lipschitz and d.c. surfaces of finite codimension in a Banach space. Czechoslovak Math. J. 58 (2008), 849-864. | DOI | MR
[28] Zamfirescu, T.: On the cut locus in Alexandrov spaces and applications to convex surfaces. Pac. J. Math. 217 (2004), 375-386. | DOI | MR | Zbl
Cité par Sources :