Properties of distance functions on convex surfaces and applications
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 247-269
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.
If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.
DOI :
10.1007/s10587-011-0010-5
Classification :
52A20, 53C45
Keywords: distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary
Keywords: distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary
@article{10_1007_s10587_011_0010_5,
author = {Rataj, Jan and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {Properties of distance functions on convex surfaces and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {247--269},
year = {2011},
volume = {61},
number = {1},
doi = {10.1007/s10587-011-0010-5},
mrnumber = {2782772},
zbl = {1224.53105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/}
}
TY - JOUR AU - Rataj, Jan AU - Zajíček, Luděk TI - Properties of distance functions on convex surfaces and applications JO - Czechoslovak Mathematical Journal PY - 2011 SP - 247 EP - 269 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/ DO - 10.1007/s10587-011-0010-5 LA - en ID - 10_1007_s10587_011_0010_5 ER -
%0 Journal Article %A Rataj, Jan %A Zajíček, Luděk %T Properties of distance functions on convex surfaces and applications %J Czechoslovak Mathematical Journal %D 2011 %P 247-269 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0010-5/ %R 10.1007/s10587-011-0010-5 %G en %F 10_1007_s10587_011_0010_5
Rataj, Jan; Zajíček, Luděk. Properties of distance functions on convex surfaces and applications. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 247-269. doi: 10.1007/s10587-011-0010-5
Cité par Sources :