On an inclusion between operator ideals
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 209-212
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $ 1\leq q $ and $1/r := 1/p \max (q/2, 1)$. We prove that ${\scr L}_{r,p}^{(c)}$, the ideal of operators of Geľfand type $l_{r,p}$, is contained in the ideal $\Pi _{p,q}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.
DOI :
10.1007/s10587-011-0007-0
Classification :
47B06, 47B10, 47L20
Keywords: operator ideals; $s$-numbers
Keywords: operator ideals; $s$-numbers
@article{10_1007_s10587_011_0007_0,
author = {Fugarolas, Manuel A.},
title = {On an inclusion between operator ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {209--212},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {2011},
doi = {10.1007/s10587-011-0007-0},
mrnumber = {2782769},
zbl = {1216.47110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0007-0/}
}
TY - JOUR AU - Fugarolas, Manuel A. TI - On an inclusion between operator ideals JO - Czechoslovak Mathematical Journal PY - 2011 SP - 209 EP - 212 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0007-0/ DO - 10.1007/s10587-011-0007-0 LA - en ID - 10_1007_s10587_011_0007_0 ER -
Fugarolas, Manuel A. On an inclusion between operator ideals. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 209-212. doi: 10.1007/s10587-011-0007-0
Cité par Sources :