A note on the convolution theorem for the Fourier transform
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 199-207.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we characterize those bounded linear transformations $Tf$ carrying $L^{1}( \mathbb {R}^{1}) $ into the space of bounded continuous functions on $\mathbb {R}^{1}$, for which the convolution identity $T(f\ast g) =Tf\cdot Tg $ holds. It is shown that such a transformation is just the Fourier transform combined with an appropriate change of variable.
DOI : 10.1007/s10587-011-0006-1
Classification : 39B22, 42A38, 47B33, 47B38
Keywords: convolution; Fourier transform
@article{10_1007_s10587_011_0006_1,
     author = {Kahane, Charles S.},
     title = {A note on the convolution theorem for the {Fourier} transform},
     journal = {Czechoslovak Mathematical Journal},
     pages = {199--207},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0006-1},
     mrnumber = {2782768},
     zbl = {1224.42016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0006-1/}
}
TY  - JOUR
AU  - Kahane, Charles S.
TI  - A note on the convolution theorem for the Fourier transform
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 199
EP  - 207
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0006-1/
DO  - 10.1007/s10587-011-0006-1
LA  - en
ID  - 10_1007_s10587_011_0006_1
ER  - 
%0 Journal Article
%A Kahane, Charles S.
%T A note on the convolution theorem for the Fourier transform
%J Czechoslovak Mathematical Journal
%D 2011
%P 199-207
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0006-1/
%R 10.1007/s10587-011-0006-1
%G en
%F 10_1007_s10587_011_0006_1
Kahane, Charles S. A note on the convolution theorem for the Fourier transform. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 199-207. doi : 10.1007/s10587-011-0006-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0006-1/

Cité par Sources :