Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 169-198
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
DOI : 10.1007/s10587-011-0005-2
Classification : 35B09, 35B44, 35B45, 35B53, 35J61, 35K59
Keywords: a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem
@article{10_1007_s10587_011_0005_2,
     author = {F\"oldes, Juraj},
     title = {Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {169--198},
     year = {2011},
     volume = {61},
     number = {1},
     doi = {10.1007/s10587-011-0005-2},
     mrnumber = {2782767},
     zbl = {1224.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/}
}
TY  - JOUR
AU  - Földes, Juraj
TI  - Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 169
EP  - 198
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/
DO  - 10.1007/s10587-011-0005-2
LA  - en
ID  - 10_1007_s10587_011_0005_2
ER  - 
%0 Journal Article
%A Földes, Juraj
%T Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
%J Czechoslovak Mathematical Journal
%D 2011
%P 169-198
%V 61
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/
%R 10.1007/s10587-011-0005-2
%G en
%F 10_1007_s10587_011_0005_2
Földes, Juraj. Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 169-198. doi: 10.1007/s10587-011-0005-2

[1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans. Am. Math. Soc. 360 (2008), 3493-3539. | DOI | MR

[2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. | MR | Zbl

[3] Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. | MR

[4] Baras, P., Cohen, L.: Complete blow-up after {$T\sb { max}$} for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987), 142-174. | DOI | MR | Zbl

[5] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). | MR

[6] Cabré, X.: On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48 (1995), 539-570. | DOI | MR

[7] Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Diff. Equ. 10 (2005), 841-860. | MR | Zbl

[8] Farina, A.: Liouville-type theorems for elliptic problems. Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). | MR | Zbl

[9] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains. NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. | DOI | MR | Zbl

[10] Fila, M., Souplet, P., Weissler, F. B.: Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions. Math. Ann. 320 (2001), 87-113. | DOI | MR

[11] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. | DOI | MR | Zbl

[12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equations 6 (1981), 883-901. | DOI | MR | Zbl

[13] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36 (1987), 1-40. | DOI | MR | Zbl

[14] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53 (2004), 483-514. | DOI | MR | Zbl

[15] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain. Math. Methods Appl. Sci. 27 (2004), 1771-1782. | DOI | MR | Zbl

[16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer Berlin (2001). Reprint of the 1998 edition. | MR

[17] Herrero, M. A., Velázquez, J. J. L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. | DOI | MR

[18] Krylov, N. V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7. D. Reidel Publishing Co. Dordrecht (1987). | MR

[19] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. River Edge, NJ (1996). | MR | Zbl

[20] López-Gómez, J., Quittner, P.: Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete Contin. Dyn. Syst. 14 (2006), 169-186. | MR

[21] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16. Birkhäuser Basel (1995). | MR

[22] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51 (1998), 139-196. | DOI | MR | Zbl

[23] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations. In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). | DOI | MR

[24] Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64 (2006), 1679-1689. | MR

[25] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139 (2007), 555-579. | DOI | MR

[26] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations. Indiana Univ. Math. J. 56 (2007), 879-908. | DOI | MR

[27] Quittner, P., Simondon, F.: A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems. J. Math. Anal. Appl. 304 (2005), 614-631. | DOI | MR | Zbl

[28] Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Basel (2007). | MR

[29] Quittner, P., Souplet, P., Winkler, M.: Initial blow-up rates and universal bounds for nonlinear heat equations. J. Differ. Equations 196 (2004), 316-339. | DOI | MR | Zbl

[30] Serrin, J.: Entire solutions of nonlinear Poisson equations. Proc. London. Math. Soc. (3) 24 (1972), 348-366. | DOI | MR | Zbl

[31] Serrin, J.: Entire solutions of quasilinear elliptic equations. J. Math. Anal. Appl. 352 (2009), 3-14. | DOI | MR | Zbl

[32] Taliaferro, S. D.: Isolated singularities of nonlinear parabolic inequalities. Math. Ann. 338 (2007), 555-586. | DOI | MR | Zbl

[33] Taliaferro, S. D.: Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361 (2009), 3289-3302. | DOI | MR | Zbl

[34] Weissler, F. B.: Single point blow-up for a semilinear initial value problem. J. Differ. Equations 55 (1984), 204-224. | DOI | MR | Zbl

[35] Weissler, F. B.: An {$L\sp \infty$} blow-up estimate for a nonlinear heat equation. Commun. Pure Appl. Math. 38 (1985), 291-295. | DOI | MR | Zbl

[36] Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. | DOI | MR | Zbl

Cité par Sources :