Keywords: a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem
@article{10_1007_s10587_011_0005_2,
author = {F\"oldes, Juraj},
title = {Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems},
journal = {Czechoslovak Mathematical Journal},
pages = {169--198},
year = {2011},
volume = {61},
number = {1},
doi = {10.1007/s10587-011-0005-2},
mrnumber = {2782767},
zbl = {1224.35013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/}
}
TY - JOUR AU - Földes, Juraj TI - Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems JO - Czechoslovak Mathematical Journal PY - 2011 SP - 169 EP - 198 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/ DO - 10.1007/s10587-011-0005-2 LA - en ID - 10_1007_s10587_011_0005_2 ER -
%0 Journal Article %A Földes, Juraj %T Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems %J Czechoslovak Mathematical Journal %D 2011 %P 169-198 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0005-2/ %R 10.1007/s10587-011-0005-2 %G en %F 10_1007_s10587_011_0005_2
Földes, Juraj. Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 169-198. doi: 10.1007/s10587-011-0005-2
[1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans. Am. Math. Soc. 360 (2008), 3493-3539. | DOI | MR
[2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. | MR | Zbl
[3] Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. | MR
[4] Baras, P., Cohen, L.: Complete blow-up after {$T\sb { max}$} for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987), 142-174. | DOI | MR | Zbl
[5] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). | MR
[6] Cabré, X.: On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48 (1995), 539-570. | DOI | MR
[7] Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Diff. Equ. 10 (2005), 841-860. | MR | Zbl
[8] Farina, A.: Liouville-type theorems for elliptic problems. Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). | MR | Zbl
[9] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains. NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. | DOI | MR | Zbl
[10] Fila, M., Souplet, P., Weissler, F. B.: Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions. Math. Ann. 320 (2001), 87-113. | DOI | MR
[11] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. | DOI | MR | Zbl
[12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equations 6 (1981), 883-901. | DOI | MR | Zbl
[13] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36 (1987), 1-40. | DOI | MR | Zbl
[14] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53 (2004), 483-514. | DOI | MR | Zbl
[15] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain. Math. Methods Appl. Sci. 27 (2004), 1771-1782. | DOI | MR | Zbl
[16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer Berlin (2001). Reprint of the 1998 edition. | MR
[17] Herrero, M. A., Velázquez, J. J. L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. | DOI | MR
[18] Krylov, N. V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7. D. Reidel Publishing Co. Dordrecht (1987). | MR
[19] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. River Edge, NJ (1996). | MR | Zbl
[20] López-Gómez, J., Quittner, P.: Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete Contin. Dyn. Syst. 14 (2006), 169-186. | MR
[21] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16. Birkhäuser Basel (1995). | MR
[22] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51 (1998), 139-196. | DOI | MR | Zbl
[23] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations. In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). | DOI | MR
[24] Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64 (2006), 1679-1689. | MR
[25] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139 (2007), 555-579. | DOI | MR
[26] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations. Indiana Univ. Math. J. 56 (2007), 879-908. | DOI | MR
[27] Quittner, P., Simondon, F.: A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems. J. Math. Anal. Appl. 304 (2005), 614-631. | DOI | MR | Zbl
[28] Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Basel (2007). | MR
[29] Quittner, P., Souplet, P., Winkler, M.: Initial blow-up rates and universal bounds for nonlinear heat equations. J. Differ. Equations 196 (2004), 316-339. | DOI | MR | Zbl
[30] Serrin, J.: Entire solutions of nonlinear Poisson equations. Proc. London. Math. Soc. (3) 24 (1972), 348-366. | DOI | MR | Zbl
[31] Serrin, J.: Entire solutions of quasilinear elliptic equations. J. Math. Anal. Appl. 352 (2009), 3-14. | DOI | MR | Zbl
[32] Taliaferro, S. D.: Isolated singularities of nonlinear parabolic inequalities. Math. Ann. 338 (2007), 555-586. | DOI | MR | Zbl
[33] Taliaferro, S. D.: Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361 (2009), 3289-3302. | DOI | MR | Zbl
[34] Weissler, F. B.: Single point blow-up for a semilinear initial value problem. J. Differ. Equations 55 (1984), 204-224. | DOI | MR | Zbl
[35] Weissler, F. B.: An {$L\sp \infty$} blow-up estimate for a nonlinear heat equation. Commun. Pure Appl. Math. 38 (1985), 291-295. | DOI | MR | Zbl
[36] Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. | DOI | MR | Zbl
Cité par Sources :