Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 127-144
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.
In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.
DOI : 10.1007/s10587-011-0002-5
Classification : 34B15, 34B18, 34B37
Keywords: $p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions
@article{10_1007_s10587_011_0002_5,
     author = {Tian, Yuansheng and Chen, Anping and Ge, Weigao},
     title = {Multiple positive solutions to multipoint one-dimensional $p${-Laplacian} boundary value problem with impulsive effects},
     journal = {Czechoslovak Mathematical Journal},
     pages = {127--144},
     year = {2011},
     volume = {61},
     number = {1},
     doi = {10.1007/s10587-011-0002-5},
     mrnumber = {2782764},
     zbl = {1224.34090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/}
}
TY  - JOUR
AU  - Tian, Yuansheng
AU  - Chen, Anping
AU  - Ge, Weigao
TI  - Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 127
EP  - 144
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/
DO  - 10.1007/s10587-011-0002-5
LA  - en
ID  - 10_1007_s10587_011_0002_5
ER  - 
%0 Journal Article
%A Tian, Yuansheng
%A Chen, Anping
%A Ge, Weigao
%T Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects
%J Czechoslovak Mathematical Journal
%D 2011
%P 127-144
%V 61
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/
%R 10.1007/s10587-011-0002-5
%G en
%F 10_1007_s10587_011_0002_5
Tian, Yuansheng; Chen, Anping; Ge, Weigao. Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 127-144. doi: 10.1007/s10587-011-0002-5

[1] Bai, Z., Ge, W.: Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl. 48 (2004), 699-707. | DOI | MR | Zbl

[2] Chen, L., Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations. J. Math. Anal. Appl. 318 (2006), 726-741. | DOI | MR | Zbl

[3] Ding, W., Han, M.: Periodic boundary value problem for the second order impulsive functional differential equations. Appl. Math. Comput. 155 (2004), 709-726. | DOI | MR | Zbl

[4] Kaufmann, E. R., Kosmatov, N., Raffoul, Y. N.: A second-order boundary value problem with impulsive effects on an unbounded domain. Nonlinear Anal., Theory Methods Appl. 69 (2008), 2924-2929. | MR | Zbl

[5] Lin, X., Jiang, D.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 321 (2006), 501-514. | DOI | MR | Zbl

[6] Lee, Y.-H., Liu, X.: Study of singular boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 331 (2007), 159-176. | DOI | MR | Zbl

[7] Lee, E. K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation. Appl. Math. Comput. 158 (2004), 745-759. | DOI | MR

[8] Rachůnková, I., Tomeček, J.: Singular Dirichlet problem for ordinary differential equation with impulses. Nonlinear Anal., Theory Methods Appl. 65 (2006), 210-229. | DOI | MR

[9] Rachůnková, I., Tvrdý, M.: Second-order periodic problem with $\varphi $-Laplacian and impulses. Nonlinear Anal., Theory Methods Appl. 63 (2005), 257-266. | DOI

[10] Su, H., Wei, Z., Wang, B.: The existence of positive solutions for a nonlinear four-point singular boundary value problem with a $p$-Laplacian operator. Nonlinear Anal., Theory Methods Appl. 66 (2007), 2204-2217. | MR | Zbl

[11] Shen, J., Wang, W.: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal., Theory Methods Appl. 69 (2008), 4055-4062. | DOI | MR | Zbl

[12] Tian, Y., Jiang, D., Ge, W.: Multiple positive solutions of periodic boundary value problems for second order impulsive differential equations. Appl. Math. Comput. 200 (2008), 123-132. | DOI | MR | Zbl

[13] Wang, Y., Hou, C.: Existence of multiple positive solutions for one dimensional $p$-Laplacian. J. Math. Anal. Appl. 315 (2006), 144-153. | DOI | MR | Zbl

[14] Zhang, X., Ge, W.: Impulsive boundary value problems involving the one-dimensional $p$-Laplacian. Nonlinear Anal., Theory Methods Appl. 70 (2009), 1692-1701. | DOI | MR | Zbl

Cité par Sources :