Keywords: $p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions
@article{10_1007_s10587_011_0002_5,
author = {Tian, Yuansheng and Chen, Anping and Ge, Weigao},
title = {Multiple positive solutions to multipoint one-dimensional $p${-Laplacian} boundary value problem with impulsive effects},
journal = {Czechoslovak Mathematical Journal},
pages = {127--144},
year = {2011},
volume = {61},
number = {1},
doi = {10.1007/s10587-011-0002-5},
mrnumber = {2782764},
zbl = {1224.34090},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/}
}
TY - JOUR AU - Tian, Yuansheng AU - Chen, Anping AU - Ge, Weigao TI - Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects JO - Czechoslovak Mathematical Journal PY - 2011 SP - 127 EP - 144 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/ DO - 10.1007/s10587-011-0002-5 LA - en ID - 10_1007_s10587_011_0002_5 ER -
%0 Journal Article %A Tian, Yuansheng %A Chen, Anping %A Ge, Weigao %T Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects %J Czechoslovak Mathematical Journal %D 2011 %P 127-144 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0002-5/ %R 10.1007/s10587-011-0002-5 %G en %F 10_1007_s10587_011_0002_5
Tian, Yuansheng; Chen, Anping; Ge, Weigao. Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 127-144. doi: 10.1007/s10587-011-0002-5
[1] Bai, Z., Ge, W.: Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl. 48 (2004), 699-707. | DOI | MR | Zbl
[2] Chen, L., Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations. J. Math. Anal. Appl. 318 (2006), 726-741. | DOI | MR | Zbl
[3] Ding, W., Han, M.: Periodic boundary value problem for the second order impulsive functional differential equations. Appl. Math. Comput. 155 (2004), 709-726. | DOI | MR | Zbl
[4] Kaufmann, E. R., Kosmatov, N., Raffoul, Y. N.: A second-order boundary value problem with impulsive effects on an unbounded domain. Nonlinear Anal., Theory Methods Appl. 69 (2008), 2924-2929. | MR | Zbl
[5] Lin, X., Jiang, D.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 321 (2006), 501-514. | DOI | MR | Zbl
[6] Lee, Y.-H., Liu, X.: Study of singular boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 331 (2007), 159-176. | DOI | MR | Zbl
[7] Lee, E. K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation. Appl. Math. Comput. 158 (2004), 745-759. | DOI | MR
[8] Rachůnková, I., Tomeček, J.: Singular Dirichlet problem for ordinary differential equation with impulses. Nonlinear Anal., Theory Methods Appl. 65 (2006), 210-229. | DOI | MR
[9] Rachůnková, I., Tvrdý, M.: Second-order periodic problem with $\varphi $-Laplacian and impulses. Nonlinear Anal., Theory Methods Appl. 63 (2005), 257-266. | DOI
[10] Su, H., Wei, Z., Wang, B.: The existence of positive solutions for a nonlinear four-point singular boundary value problem with a $p$-Laplacian operator. Nonlinear Anal., Theory Methods Appl. 66 (2007), 2204-2217. | MR | Zbl
[11] Shen, J., Wang, W.: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal., Theory Methods Appl. 69 (2008), 4055-4062. | DOI | MR | Zbl
[12] Tian, Y., Jiang, D., Ge, W.: Multiple positive solutions of periodic boundary value problems for second order impulsive differential equations. Appl. Math. Comput. 200 (2008), 123-132. | DOI | MR | Zbl
[13] Wang, Y., Hou, C.: Existence of multiple positive solutions for one dimensional $p$-Laplacian. J. Math. Anal. Appl. 315 (2006), 144-153. | DOI | MR | Zbl
[14] Zhang, X., Ge, W.: Impulsive boundary value problems involving the one-dimensional $p$-Laplacian. Nonlinear Anal., Theory Methods Appl. 70 (2009), 1692-1701. | DOI | MR | Zbl
Cité par Sources :