Linear maps that strongly preserve regular matrices over the Boolean algebra
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 113-125.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The set of all $m\times n$ Boolean matrices is denoted by ${\mathbb M}_{m,n}$. We call a matrix $A\in {\mathbb M}_{m,n}$ regular if there is a matrix $G\in {\mathbb M}_{n,m}$ such that $AGA=A$. In this paper, we study the problem of characterizing linear operators on ${\mathbb M}_{m,n}$ that strongly preserve regular matrices. Consequently, we obtain that if $\min \{m,n\}\le 2$, then all operators on ${\mathbb M}_{m,n}$ strongly preserve regular matrices, and if $\min \{m,n\}\ge 3$, then an operator $T$ on ${\mathbb M}_{m,n}$ strongly preserves regular matrices if and only if there are invertible matrices $U$ and $V$ such that $T(X)=UXV$ for all $X\in {\mathbb M}_{m,n}$, or $m=n$ and $T(X)=UX^TV$ for all $X\in {\mathbb M}_{n}$.
DOI : 10.1007/s10587-011-0001-6
Classification : 15A09, 15A86, 15B34
Keywords: Boolean algebra; regular matrix; $(U, V)$-operator
@article{10_1007_s10587_011_0001_6,
     author = {Kang, Kyung-Tae and Song, Seok-Zun},
     title = {Linear maps that strongly preserve regular matrices over the {Boolean} algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.1007/s10587-011-0001-6},
     mrnumber = {2782763},
     zbl = {1224.15054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/}
}
TY  - JOUR
AU  - Kang, Kyung-Tae
AU  - Song, Seok-Zun
TI  - Linear maps that strongly preserve regular matrices over the Boolean algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2011
SP  - 113
EP  - 125
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/
DO  - 10.1007/s10587-011-0001-6
LA  - en
ID  - 10_1007_s10587_011_0001_6
ER  - 
%0 Journal Article
%A Kang, Kyung-Tae
%A Song, Seok-Zun
%T Linear maps that strongly preserve regular matrices over the Boolean algebra
%J Czechoslovak Mathematical Journal
%D 2011
%P 113-125
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/
%R 10.1007/s10587-011-0001-6
%G en
%F 10_1007_s10587_011_0001_6
Kang, Kyung-Tae; Song, Seok-Zun. Linear maps that strongly preserve regular matrices over the Boolean algebra. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 113-125. doi : 10.1007/s10587-011-0001-6. http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/

Cité par Sources :