Linear maps that strongly preserve regular matrices over the Boolean algebra
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 113-125
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The set of all $m\times n$ Boolean matrices is denoted by ${\mathbb M}_{m,n}$. We call a matrix $A\in {\mathbb M}_{m,n}$ regular if there is a matrix $G\in {\mathbb M}_{n,m}$ such that $AGA=A$. In this paper, we study the problem of characterizing linear operators on ${\mathbb M}_{m,n}$ that strongly preserve regular matrices. Consequently, we obtain that if $\min \{m,n\}\le 2$, then all operators on ${\mathbb M}_{m,n}$ strongly preserve regular matrices, and if $\min \{m,n\}\ge 3$, then an operator $T$ on ${\mathbb M}_{m,n}$ strongly preserves regular matrices if and only if there are invertible matrices $U$ and $V$ such that $T(X)=UXV$ for all $X\in {\mathbb M}_{m,n}$, or $m=n$ and $T(X)=UX^TV$ for all $X\in {\mathbb M}_{n}$.
DOI :
10.1007/s10587-011-0001-6
Classification :
15A09, 15A86, 15B34
Keywords: Boolean algebra; regular matrix; $(U, V)$-operator
Keywords: Boolean algebra; regular matrix; $(U, V)$-operator
@article{10_1007_s10587_011_0001_6,
author = {Kang, Kyung-Tae and Song, Seok-Zun},
title = {Linear maps that strongly preserve regular matrices over the {Boolean} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {113--125},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {2011},
doi = {10.1007/s10587-011-0001-6},
mrnumber = {2782763},
zbl = {1224.15054},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/}
}
TY - JOUR AU - Kang, Kyung-Tae AU - Song, Seok-Zun TI - Linear maps that strongly preserve regular matrices over the Boolean algebra JO - Czechoslovak Mathematical Journal PY - 2011 SP - 113 EP - 125 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/ DO - 10.1007/s10587-011-0001-6 LA - en ID - 10_1007_s10587_011_0001_6 ER -
%0 Journal Article %A Kang, Kyung-Tae %A Song, Seok-Zun %T Linear maps that strongly preserve regular matrices over the Boolean algebra %J Czechoslovak Mathematical Journal %D 2011 %P 113-125 %V 61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0001-6/ %R 10.1007/s10587-011-0001-6 %G en %F 10_1007_s10587_011_0001_6
Kang, Kyung-Tae; Song, Seok-Zun. Linear maps that strongly preserve regular matrices over the Boolean algebra. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 1, pp. 113-125. doi: 10.1007/s10587-011-0001-6
Cité par Sources :