On well-posedness for parametric vector quasiequilibrium problems with moving cones
Applications of Mathematics, Tome 61 (2016) no. 6, pp. 651-668.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.
DOI : 10.1007/s10492-016-0151-9
Classification : 49K40, 90C31, 91B50
Keywords: quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; $C$-upper semicontinuity; $C$-lower semicontinuity
@article{10_1007_s10492_016_0151_9,
     author = {Anh, Lam Quoc and Hien, Dinh Vinh},
     title = {On well-posedness for parametric vector quasiequilibrium problems with moving cones},
     journal = {Applications of Mathematics},
     pages = {651--668},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2016},
     doi = {10.1007/s10492-016-0151-9},
     mrnumber = {3572459},
     zbl = {06674850},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0151-9/}
}
TY  - JOUR
AU  - Anh, Lam Quoc
AU  - Hien, Dinh Vinh
TI  - On well-posedness for parametric vector quasiequilibrium problems with moving cones
JO  - Applications of Mathematics
PY  - 2016
SP  - 651
EP  - 668
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0151-9/
DO  - 10.1007/s10492-016-0151-9
LA  - en
ID  - 10_1007_s10492_016_0151_9
ER  - 
%0 Journal Article
%A Anh, Lam Quoc
%A Hien, Dinh Vinh
%T On well-posedness for parametric vector quasiequilibrium problems with moving cones
%J Applications of Mathematics
%D 2016
%P 651-668
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0151-9/
%R 10.1007/s10492-016-0151-9
%G en
%F 10_1007_s10492_016_0151_9
Anh, Lam Quoc; Hien, Dinh Vinh. On well-posedness for parametric vector quasiequilibrium problems with moving cones. Applications of Mathematics, Tome 61 (2016) no. 6, pp. 651-668. doi : 10.1007/s10492-016-0151-9. http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0151-9/

Cité par Sources :