On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications
Applications of Mathematics, Tome 61 (2016) no. 4, pp. 443-461
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function $C(x,y)$ defining an ${\alpha }$-determinantal point process (DPP). Assuming absolute integrability of the function $C_0(x) = C(o,x)$, we show that a stationary ${\alpha }$-DPP with kernel function $C_0(x)$ is ``strongly'' Brillinger-mixing, implying, among others, that its tail-$\sigma $-field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications to statistical second-order analysis of ${\alpha }$-DPPs.
DOI :
10.1007/s10492-016-0141-y
Classification :
60F05, 60G55
Keywords: determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test
Keywords: determinantal point process; permanental point process; trivial tail-$\sigma $-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter $K$-function; kernel-type product density estimator; goodness-of-fit test
@article{10_1007_s10492_016_0141_y,
author = {Heinrich, Lothar},
title = {On the strong {Brillinger-mixing} property of ${\alpha }$-determinantal point processes and some applications},
journal = {Applications of Mathematics},
pages = {443--461},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {2016},
doi = {10.1007/s10492-016-0141-y},
mrnumber = {3532253},
zbl = {06644006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0141-y/}
}
TY - JOUR
AU - Heinrich, Lothar
TI - On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications
JO - Applications of Mathematics
PY - 2016
SP - 443
EP - 461
VL - 61
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0141-y/
DO - 10.1007/s10492-016-0141-y
LA - en
ID - 10_1007_s10492_016_0141_y
ER -
%0 Journal Article
%A Heinrich, Lothar
%T On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications
%J Applications of Mathematics
%D 2016
%P 443-461
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0141-y/
%R 10.1007/s10492-016-0141-y
%G en
%F 10_1007_s10492_016_0141_y
Heinrich, Lothar. On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications. Applications of Mathematics, Tome 61 (2016) no. 4, pp. 443-461. doi: 10.1007/s10492-016-0141-y
Cité par Sources :