Zonoids with an equatorial characterization
Applications of Mathematics, Tome 61 (2016) no. 4, pp. 413-422.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class.
DOI : 10.1007/s10492-016-0139-5
Classification : 52A15, 53C45, 53C65
Keywords: integral geometry; convex body; zonoid; support function
@article{10_1007_s10492_016_0139_5,
     author = {Aramyan, Rafik},
     title = {Zonoids with an equatorial characterization},
     journal = {Applications of Mathematics},
     pages = {413--422},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2016},
     doi = {10.1007/s10492-016-0139-5},
     mrnumber = {3532251},
     zbl = {06644004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0139-5/}
}
TY  - JOUR
AU  - Aramyan, Rafik
TI  - Zonoids with an equatorial characterization
JO  - Applications of Mathematics
PY  - 2016
SP  - 413
EP  - 422
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0139-5/
DO  - 10.1007/s10492-016-0139-5
LA  - en
ID  - 10_1007_s10492_016_0139_5
ER  - 
%0 Journal Article
%A Aramyan, Rafik
%T Zonoids with an equatorial characterization
%J Applications of Mathematics
%D 2016
%P 413-422
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0139-5/
%R 10.1007/s10492-016-0139-5
%G en
%F 10_1007_s10492_016_0139_5
Aramyan, Rafik. Zonoids with an equatorial characterization. Applications of Mathematics, Tome 61 (2016) no. 4, pp. 413-422. doi : 10.1007/s10492-016-0139-5. http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0139-5/

Cité par Sources :