Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
Applications of Mathematics, Tome 61 (2016) no. 3, pp. 317-337

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation $$ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, $$ where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\to \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\to 0$ as $|x|\to \infty $ is established.
DOI : 10.1007/s10492-016-0134-x
Classification : 35D30, 35J20, 35J92
Keywords: $N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold
@article{10_1007_s10492_016_0134_x,
     author = {Chen, Caisheng and Song, Hongxue},
     title = {Soliton solutions for quasilinear {Schr\"odinger} equation with critical exponential growth in $\mathbb {R}^N$},
     journal = {Applications of Mathematics},
     pages = {317--337},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2016},
     doi = {10.1007/s10492-016-0134-x},
     mrnumber = {3502114},
     zbl = {06587855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/}
}
TY  - JOUR
AU  - Chen, Caisheng
AU  - Song, Hongxue
TI  - Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
JO  - Applications of Mathematics
PY  - 2016
SP  - 317
EP  - 337
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/
DO  - 10.1007/s10492-016-0134-x
LA  - en
ID  - 10_1007_s10492_016_0134_x
ER  - 
%0 Journal Article
%A Chen, Caisheng
%A Song, Hongxue
%T Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
%J Applications of Mathematics
%D 2016
%P 317-337
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/
%R 10.1007/s10492-016-0134-x
%G en
%F 10_1007_s10492_016_0134_x
Chen, Caisheng; Song, Hongxue. Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$. Applications of Mathematics, Tome 61 (2016) no. 3, pp. 317-337. doi: 10.1007/s10492-016-0134-x

Cité par Sources :