Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
Applications of Mathematics, Tome 61 (2016) no. 3, pp. 317-337
In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation $$ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, $$ where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\to \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\to 0$ as $|x|\to \infty $ is established.
In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation $$ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, $$ where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\to \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\to 0$ as $|x|\to \infty $ is established.
DOI :
10.1007/s10492-016-0134-x
Classification :
35D30, 35J20, 35J92
Keywords: $N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold
Keywords: $N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold
@article{10_1007_s10492_016_0134_x,
author = {Chen, Caisheng and Song, Hongxue},
title = {Soliton solutions for quasilinear {Schr\"odinger} equation with critical exponential growth in $\mathbb {R}^N$},
journal = {Applications of Mathematics},
pages = {317--337},
year = {2016},
volume = {61},
number = {3},
doi = {10.1007/s10492-016-0134-x},
mrnumber = {3502114},
zbl = {06587855},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/}
}
TY - JOUR
AU - Chen, Caisheng
AU - Song, Hongxue
TI - Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
JO - Applications of Mathematics
PY - 2016
SP - 317
EP - 337
VL - 61
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/
DO - 10.1007/s10492-016-0134-x
LA - en
ID - 10_1007_s10492_016_0134_x
ER -
%0 Journal Article
%A Chen, Caisheng
%A Song, Hongxue
%T Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
%J Applications of Mathematics
%D 2016
%P 317-337
%V 61
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0134-x/
%R 10.1007/s10492-016-0134-x
%G en
%F 10_1007_s10492_016_0134_x
Chen, Caisheng; Song, Hongxue. Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$. Applications of Mathematics, Tome 61 (2016) no. 3, pp. 317-337. doi: 10.1007/s10492-016-0134-x
Cité par Sources :