Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_016_0126_x, author = {Lu, Zuliang}, title = {New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems}, journal = {Applications of Mathematics}, pages = {135--163}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {2016}, doi = {10.1007/s10492-016-0126-x}, mrnumber = {3470771}, zbl = {06562151}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/} }
TY - JOUR AU - Lu, Zuliang TI - New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems JO - Applications of Mathematics PY - 2016 SP - 135 EP - 163 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/ DO - 10.1007/s10492-016-0126-x LA - en ID - 10_1007_s10492_016_0126_x ER -
%0 Journal Article %A Lu, Zuliang %T New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems %J Applications of Mathematics %D 2016 %P 135-163 %V 61 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/ %R 10.1007/s10492-016-0126-x %G en %F 10_1007_s10492_016_0126_x
Lu, Zuliang. New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. Applications of Mathematics, Tome 61 (2016) no. 2, pp. 135-163. doi : 10.1007/s10492-016-0126-x. http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/
Cité par Sources :