New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
Applications of Mathematics, Tome 61 (2016) no. 2, pp. 135-163
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^{\infty }(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.
DOI :
10.1007/s10492-016-0126-x
Classification :
49J20, 65N30
Keywords: a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method
Keywords: a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method
@article{10_1007_s10492_016_0126_x,
author = {Lu, Zuliang},
title = {New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems},
journal = {Applications of Mathematics},
pages = {135--163},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2016},
doi = {10.1007/s10492-016-0126-x},
mrnumber = {3470771},
zbl = {06562151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/}
}
TY - JOUR
AU - Lu, Zuliang
TI - New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
JO - Applications of Mathematics
PY - 2016
SP - 135
EP - 163
VL - 61
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/
DO - 10.1007/s10492-016-0126-x
LA - en
ID - 10_1007_s10492_016_0126_x
ER -
%0 Journal Article
%A Lu, Zuliang
%T New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
%J Applications of Mathematics
%D 2016
%P 135-163
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-016-0126-x/
%R 10.1007/s10492-016-0126-x
%G en
%F 10_1007_s10492_016_0126_x
Lu, Zuliang. New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. Applications of Mathematics, Tome 61 (2016) no. 2, pp. 135-163. doi: 10.1007/s10492-016-0126-x
Cité par Sources :