Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation
Applications of Mathematics, Tome 60 (2015) no. 6, pp. 703-724.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the existence of infinitely many solutions to the boundary value problem \begin {gather} \frac {{\rm d}}{{\rm d} t}\Big (\frac {1}{2} _{0}D_{t}^{-\beta }(u'(t)) +\frac {1}{2} _{t}D_{T}^{-\beta }(u'(t))\Big )+\nabla F(t,u(t))=0 \quad \text {\rm a.e.}\ t\in [0,T],\nonumber \\ u(0)=u(T)=0.\nonumber \end {gather} Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.
DOI : 10.1007/s10492-015-0118-2
Classification : 26A33, 35G60
Keywords: fractional boundary value problem; critical point theory; variational methods
@article{10_1007_s10492_015_0118_2,
     author = {Chen, Jing and Tang, Xian Hua},
     title = {Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation},
     journal = {Applications of Mathematics},
     pages = {703--724},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2015},
     doi = {10.1007/s10492-015-0118-2},
     mrnumber = {3436569},
     zbl = {06537669},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0118-2/}
}
TY  - JOUR
AU  - Chen, Jing
AU  - Tang, Xian Hua
TI  - Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation
JO  - Applications of Mathematics
PY  - 2015
SP  - 703
EP  - 724
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0118-2/
DO  - 10.1007/s10492-015-0118-2
LA  - en
ID  - 10_1007_s10492_015_0118_2
ER  - 
%0 Journal Article
%A Chen, Jing
%A Tang, Xian Hua
%T Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation
%J Applications of Mathematics
%D 2015
%P 703-724
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0118-2/
%R 10.1007/s10492-015-0118-2
%G en
%F 10_1007_s10492_015_0118_2
Chen, Jing; Tang, Xian Hua. Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation. Applications of Mathematics, Tome 60 (2015) no. 6, pp. 703-724. doi : 10.1007/s10492-015-0118-2. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0118-2/

Cité par Sources :