Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm
Applications of Mathematics, Tome 60 (2015) no. 6, pp. 597-616
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.
We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.
DOI :
10.1007/s10492-015-0113-7
Classification :
65D05, 65N15, 65N50
Keywords: $hp$-methods; anisotropic mesh adaptation; interpolation error estimates
Keywords: $hp$-methods; anisotropic mesh adaptation; interpolation error estimates
@article{10_1007_s10492_015_0113_7,
author = {Dolej\v{s}{\'\i}, V{\'\i}t},
title = {Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm},
journal = {Applications of Mathematics},
pages = {597--616},
year = {2015},
volume = {60},
number = {6},
doi = {10.1007/s10492-015-0113-7},
mrnumber = {3436564},
zbl = {06537664},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/}
}
TY - JOUR AU - Dolejší, Vít TI - Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm JO - Applications of Mathematics PY - 2015 SP - 597 EP - 616 VL - 60 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/ DO - 10.1007/s10492-015-0113-7 LA - en ID - 10_1007_s10492_015_0113_7 ER -
%0 Journal Article %A Dolejší, Vít %T Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm %J Applications of Mathematics %D 2015 %P 597-616 %V 60 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/ %R 10.1007/s10492-015-0113-7 %G en %F 10_1007_s10492_015_0113_7
Dolejší, Vít. Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm. Applications of Mathematics, Tome 60 (2015) no. 6, pp. 597-616. doi: 10.1007/s10492-015-0113-7
Cité par Sources :