Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_015_0113_7, author = {Dolej\v{s}{\'\i}, V{\'\i}t}, title = {Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm}, journal = {Applications of Mathematics}, pages = {597--616}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {2015}, doi = {10.1007/s10492-015-0113-7}, mrnumber = {3436564}, zbl = {06537664}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/} }
TY - JOUR AU - Dolejší, Vít TI - Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm JO - Applications of Mathematics PY - 2015 SP - 597 EP - 616 VL - 60 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/ DO - 10.1007/s10492-015-0113-7 LA - en ID - 10_1007_s10492_015_0113_7 ER -
%0 Journal Article %A Dolejší, Vít %T Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm %J Applications of Mathematics %D 2015 %P 597-616 %V 60 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/ %R 10.1007/s10492-015-0113-7 %G en %F 10_1007_s10492_015_0113_7
Dolejší, Vít. Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm. Applications of Mathematics, Tome 60 (2015) no. 6, pp. 597-616. doi : 10.1007/s10492-015-0113-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0113-7/
Cité par Sources :