The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
Applications of Mathematics, Tome 60 (2015) no. 5, pp. 573-596
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline {\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline {\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\|u-u_h\|_1$.
DOI :
10.1007/s10492-015-0112-8
Classification :
65M15, 65M60
Keywords: finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1, \infty }$-norm; a posteriori error estimator
Keywords: finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1, \infty }$-norm; a posteriori error estimator
@article{10_1007_s10492_015_0112_8,
author = {Zhang, Tie and Zhang, Shuhua},
title = {The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type},
journal = {Applications of Mathematics},
pages = {573--596},
publisher = {mathdoc},
volume = {60},
number = {5},
year = {2015},
doi = {10.1007/s10492-015-0112-8},
mrnumber = {3396481},
zbl = {06486926},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0112-8/}
}
TY - JOUR AU - Zhang, Tie AU - Zhang, Shuhua TI - The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type JO - Applications of Mathematics PY - 2015 SP - 573 EP - 596 VL - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0112-8/ DO - 10.1007/s10492-015-0112-8 LA - en ID - 10_1007_s10492_015_0112_8 ER -
%0 Journal Article %A Zhang, Tie %A Zhang, Shuhua %T The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type %J Applications of Mathematics %D 2015 %P 573-596 %V 60 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0112-8/ %R 10.1007/s10492-015-0112-8 %G en %F 10_1007_s10492_015_0112_8
Zhang, Tie; Zhang, Shuhua. The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type. Applications of Mathematics, Tome 60 (2015) no. 5, pp. 573-596. doi: 10.1007/s10492-015-0112-8
Cité par Sources :